Exploring the mass-loss history and the mass content in circumstellar nebulae around three magellanic luminous blue variable stars

> Claudia Agliozzo @ Millennium Institute of Astrophysics & Universidad Andrés Bello

and G. Umana, C. Trigilio, C. Buemi, P. Leto @INAF A. Ingallinera, M. Massardi @INAF F. Bauer @PUC G. Pignata, F. Bufano @UNAB L. Cerrigone @ASTRON

January 21, 2015, Arc-Bologna

LMC as seen by Herschel (red 250 µm, green 100 µm) and Spitzer (blue 70 µm)

Image credit: ESA/NASA/JPL-Caltech/STScI

LBVs: open issues

G79.29+0.46: a Galactic example

LBVs at different metallicity: the Magellanic sample

ALMA project and future work

Luminous Blue Variable Stars

PROPERTIES

- Post-MS
- $M_{\rm MS} > 22 \, {\rm M}_{\odot}$
- $L \sim 10^{5} 10^{6.3} L_{\odot}$
- spectral type: O-B
- Visual spectroscopic and photometric variability
- \checkmark $\dot{M} > 10^{-6} 10^{-5} M_{\odot} yr^{-1}$ (stellar wind or outburst)
 -) Formation of nebula ~ some M_{\odot}

Final Destiny

Wolf-Rayet star $M \sim 20 M_{\odot}$

Core Collapse-Sne Type IIn Sne?

Mass-loss mechanism indipendent of metallicity?

Dust producers in high-redshift galaxies?

Strategy

Mass-loss mechanism indipendent of metallicity?

Study of the mass-loss history of LBVs in different environments

Mass-loss history by means of multiwavelength and high-resolution observations (Umana et al. 2011a)

Strategy

Dust producers in high-redshift galaxies?

Determine the dust content and the rate of dust formation

IR and sub-mm observations

Studying the mass-loss

Radio observations of Galactic LBVs provided:

- ionized component of the nebula (bulk of the nebula mass)
- current mass-loss (central object, high-resolution)

Buemi et al. in preparation Duncan & White 2000

Studying the mass-loss

Radio observations of Galactic LBVs provided:

- ionized component of the nebula (bulk of the nebula mass)
- current mass-loss (central object, high-resolution)

HD	162685 8.4601 GHz			
		C70 00 1 0 46		AG Car
		Mioniz [Msun]	dM/dt [M sun /yr]	Ref
Umani	G79.29+0.46 G26.47+0.02 IRAS 18576+03 AG Car Hen3-519 WRA751 WRA751 RAHD168625 HR Car G24.73+0.69	1.5 17 41 2.5 9 2 1.8 2 0.1 EVLA 0.5	$ \begin{array}{c} 1.6 \times 10^{-6} \\ 1.9 \times 10^{-4} \\ 10^{-6} \\ 5 \times 10^{-5} \\ 10^{-4} \\ 5 \times 10^{-5} \\ 1.5 \times 10^{-6} \\ 2 \times 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ \end{array} $	Agliozzo et al. 2014 Umana et al. 2012 Buemi et al. 2010 Voors et al. 2000; Duncan & White 2002; Buemi et al. in prep. Hz Umana et al. 2010 Nota et al. 1996b Clark et al. 2003
	VLA 5 GHz	Umana et al. 2011, b		ATCA 8 GHz ATCA 5 GHz

Buemi et al. in preparation Duncan & White 2000

Exploring the mass-loss history

Figure 3. 6 cm EVLA map of G79.29+0.46 (gray) superimposed to the MIPS $24 \,\mu\text{m}$ map (red). The field of view is 3.5×3.5 centered on the LBV position.

Umana et al. 2011, b

G79.29 + 0.46 is a candidate luminous blue variable located in the *Cygnus-X star forming region* at a distance of D \sim 1.7 kpc Nebula size 2'×2'

MIPS image at 24 μm (red) + EVLA map at 5 GHz (grey)

Nebula is ionization bounded

Umana et al. 2011, b

Exploring the mass-loss history

Figure 2. Left: the map of Gal 026.47+0.02 at 5 GHz superimposed on to the 70- μ m image (FOV ~250 arcsec). In the zoom of the radio image (right), the contour levels are 0.18 × (4, 6, 8, 10, 13, 16, 20, 25, 30, 40, 50, 60, 80, 100, 130, 160, 200) mJy beam⁻¹.

 $\label{eq:G26.47+0.02} \begin{array}{l} \text{is a candidate} \\ \text{luminous blue variable at a} \\ \text{distance of } D \sim 4.8 \ \text{kpc} \end{array}$

Exploring the mass-loss history of G79.29+0.46

100 arcsec

PACS images 70, 100, 160 μm

3 dusty shells at ~ 100, 150, 200 arcsec

 $v_{exp} = 30 \text{ km s}^{-1}$ Waters

Waters et al. 1996

Kinematical ages $t_1 = 5.4x10^4 \text{ yr}$ $t_2 = 4.0x10^4 \text{ yr}$ $t_3 = 2.7x10^4 \text{ yr}$

> The derived mass-loss rate

 $\dot{M} = 1.4 \times 10^{-6} [M_{\odot} yr^{-1}]$

can not explain the nebula mass (~1.53 M) in a timescale $\sim 10^4 \ yr$

Agliozzo et al. 2014

Exploring the dust content in G79.29+0.46

Hot stars do not emit down to 160 μm

Nature of the central object?

PACS images

Exploring the dust content in G79.29+0.46

Point source catalogues

2MASS J, H, K **WISE (3-12** µm)

Archival data

Spitzer

IRAC (8 µm) MIPS (24, 70 μm) IRS (5-37µm)

The nature of the central object in the IR

1 black body (input: T_{eff}) + 4 grey bodies (T_N: free parameters) BESTFIT (following Flagey et al. 2011)

We suggest a range of temperatures explored by T1 to T4, in a circumstellar envelope close to the central star.

Agliozzo et al. 2014, MNRAS, 440, 1391A

The IR nebula of G79.29+0.46: populations of dust

Resolution: 2" × 2" (IRAC) 6" × 6" (MIPS)

Nebula ionization bounded

 $\begin{array}{l} \textbf{8} \hspace{0.1cm} \mu \textbf{m} \hspace{0.1cm} \textbf{well-contained} \\ \textbf{within the ionized} \\ \textbf{nebula} \end{array}$

 $\begin{array}{l} \textbf{24} \hspace{0.1cm} \mu \textbf{m} \hspace{0.1cm} \textbf{emission} \\ \textbf{more extended than} \\ \textbf{the ionized gas} \end{array}$

The IR nebula of G79.29+0.46: populations of dust

Resolution: 2" × 2" (IRAC) 6" × 6" (MIPS)

Nebula ionization bounded

 $\begin{array}{l} \textbf{8} \hspace{0.1cm} \mu \textbf{m} \hspace{0.1cm} \textbf{well-contained} \\ \textbf{within the ionized} \\ \textbf{nebula} \end{array}$

 $\begin{array}{l} \textbf{24} \ \mu \textbf{m} \ \textbf{emission} \\ \textbf{more extended than} \\ \textbf{the ionized gas} \end{array}$

Umana et al. 2011, ApJL, 739, 111

Modelling the nebula of G79.29+0.46

Photo-ionization code CLOUDY

Input: parameters derived from radio and infrared analysis

Parameter	Value
T_{eff} (K)	20400
D (pc)	1700
$\log(r_{in})$ (cm)	18.3085
$log(r_{in})$ (pc)	0.66
$M (M_{\odot})$	1.53
$\log(L/(L_{\odot}))$	5.4
$\log(n_{\rm H}) \ ({\rm cm}^{-3})$	2.13
T_e (K)	5800
gas/dust	99

We suggest that the emission at the IRAC bands is due to spectral lines rather than dust.

Modelling the nebula of G79.29+0.46

Photo-ionization code CLOUDY

Input: parameters derived from radio and infrared analysis

Parameter	Value
T_{eff} (K)	20400
D (pc)	1700
$log(r_{in})$ (cm)	18.3085
$log(r_{in})$ (pc)	0.66
M (M _☉)	1.53
$\log(L/(L_{\odot}))$	5.4
$\log(n_{\rm H}) \ ({\rm cm}^{-3})$	2.13
T_e (K)	5800
gas/dust	99

We suggest that the emission at the IRAC bands is due to spectral lines rather than dust. *Luminous and variable stars in M31 and M33*

(Humphreys et al. 2014)

no evidence hot dust.

The dust may be cold and needed to be observed from the mid-IR to the sub-mm

Fig. 9.— The SEDs for the confirmed LBVs. The symbols are the same as in Figure 7, e xcept for Var. 15. We also use open circles for the earlier B and V photometry when it was brighter. As no ted in the text we've used visual and near-infrared photometry for Szeifert et al. (1996) for Var C. Note that AF And and Var. 15 show PAH emission.

Properties of the dust in the nebula

Hp: thermal dust, opically thin

Table 7. Assumed chemical composition, grain size and absorption coefficient. We also show the derived optical depth, temperature and mass of the dust, where \lambda_1 and \lambda_2 are 8.69 and 13.5 \u03c0mm, respectively (for hot dust) and 24 and 70 \u03c0mm (for warm dust).

Composition and size (µm)	$(\operatorname{cm}^{\kappa_{\lambda_1}} g^{-1})$	$(\operatorname{cm}^{\kappa_{\lambda_2}} g^{-1})$	τ_{λ_1}	τ.,2	T (K)	(M_{\odot})	(M_{\odot})
Warm dust							
Silic. (0.01, 0.1, 1)	647.7	69	$(4.0 \pm 0.4) \times 10^{-4}$	$(4.2 \pm 0.8) \times 10^{-5}$	59 ± 18	0.032 ± 0.006	0.032 ± 0.006
Graph. (0.01)	300	107	$(6.1 \pm 0.6) \times 10^{-5}$	$(2.2 \pm 0.4) \times 10^{-5}$	72 ± 22	0.011 ± 0.002	0.011 ± 0.002
Graph. (0.1)	309	109	$(6.2 \pm 0.6) \times 10^{-5}$	$(2.2 \pm 0.4) \times 10^{-6}$	72 ± 22	0.010 ± 0.002	0.010 ± 0.002
Graph. (1)	600	300	$(3.6 \pm 0.4) \times 10^{-5}$	$(1.8 \pm 0.4) \times 10^{-5}$	77 ± 23	0.0031 ± 0.006	0.0031 ± 0.006

 $I_{\nu} \approx B_{\nu}(T)\tau_{\nu}$

Average dust temperature ~ 60-80 K

Average dust mass $\sim 0.02 M_{sun}$

 $\tau_{\nu} = \kappa_{\nu} \rho I$ $M = \rho I \Omega D^{2}$

Properties of the dust in the nebula

Hp: thermal dust, opically thin

Table 7. Assumed chemical composition, grain size and absorption coefficient. We also show the derived optical depth, temperature and mass of the dust, where λ_1 and λ_2 are 8.69 and 13.5 µm, respectively (for hot dust) and 24 and 70 µm (for warm dust).

Composition and size (µm)	$(\operatorname{cm}^{\kappa_{\lambda_1}} g^{-1})$	$(\operatorname{cm}^{\kappa_{\lambda_2}} g^{-1})$	τ_{λ_1}	r_{λ_2}	Т (К)	(M_{\odot})	(M_{\odot})
Warm dust							
Silic. (0.01, 0.1, 1)	647.7	69	$(4.0 \pm 0.4) \times 10^{-4}$	~(4.2-2 U.SFX	10^{-5} 59 \pm 18	0.032 ± 0.006	0.032 ± 0.006
Graph. (0.01)		107	$(6.1 \pm 0.0$ Mdust	Msun	Tdust K	$0.011 \pm 0.00 \text{Ref}$	0.011 ± 0.002
Graph. (0.1)			$(6.2 \pm 0.6) \times 10^{-5}$	$(2.2 \pm 0.4) \times$	10 ⁻⁰ 72 ± 22	0.010 ± 0.002	0.010 ± 0.002
Graph. (1)	G79.	29+0.46	$5^{(3.6 \pm 0.4) \times 10^{-0}}$	$.02^{(\pm 0.4)} \times$	60-80	0.0031 ± Agliozzo	et al. 2014
	G26.	47+0.02	2 0.0	1-0.03	71-92	Umana et	al. 2012
$I_{\nu} \approx B_{\nu}(7)$	$)\tau_{\nu}$ IRA	S 18576	6+0341 0	.01	130-150	Buemi et	al. 2010
	AG	Car	Avera	1.2 J.2	emperature	∼ O Voors et al	. 2000;
$\tau_{\nu} = \kappa_{\nu} \rho$	Hon	2_510	Avera	Se dust n	nass ~ 0.02	M_{sul} Smith et al	. 1994;
v v	ITCH	J-JIJ	U	5007		v amvatira-	-Nakou et al.
	\sim WRA	1751	0	.04	81	2013; Buen	ií et al. in
Μ=ρΤ ΔΖ Γ	RAHD1	68625	0.	.001	110-210	Umana ef	t al. 2010
	C01	$72 \downarrow 0.60$		004	60		1 0000
	G24.	7370.0		.004	00	Clark et a	1. 2003

LBVs in the Magellanic Clouds

PROBLEM LBV phenomenon indipendent of metallicity? Smith & Owocki 2006, ApJ, 645, L45

METHOD

LMC: laboratory to test if LBV is a metallicity independent phenomenon (D ~ 48.5 kpc, $Z_{LMC} \sim 1/2 Z_{\odot}$).

TARGET LBVNe in the LMC (poorly observed).

No observations in the radio so far. IR observations not suitable for exploring the dust content in the LMC.

HST optical images available in the data archive.

LBVs in the Magellanic Clouds

PROBLEM LBV phenomenon indipendent of metallicity? Smith & Owocki 2006, ApJ, 645, L45

METHOD

LMC: laboratory to test if LBV is a metallicity independent phenomenon (D ~ 48.5 kpc, $Z_{LMC} \sim \frac{1}{2} Z_{\odot}$).

TARGET LBVNe in the LMC (poorly observed).

No observations in the radio so far. IR observations not suitable for exploring the dust content in the LMC.

HST optical images available in the data archive.

Radio detection at ATCA

Agliozzo et al. 2012 Agliozzo et al. 2015, in preparation

Luminous Blue Variable in the Magellanic Clouds

Mass-loss of the magellanic LBVs

MASS OF THE IONIZED NEBULA

Source	s (pc)	Ω_s (arcsec) ²	$< n_e > \ ({\rm cm}^{-3})$	$M_{ionized} \ ({ m M}_{\odot})$
S61	0.40	24.5	58	0.78
R127 R143	0.28-0.59 0.24-0.71	38.1 19	69-48 85-49	1.01-1.46 0.52-0.90
S119	0.61	71	19	1.13

CURRENT MASS-LOSS

Source	V_{∞}	Ŵ
	$(km s^{-1})$	$(M_{\odot}yr^{-1})$
S 61	250 ^a	$< 1.4 \times 10^{-5}$
R127	110^{b}	$< 2 \times 10^{-5}$
R143	130 ^c	$< 7 \times 10^{-6}$
S119		$1.34 \times 10^{-5} a$

KINEMATICAL AGE

Source	size	V _{exp}	t _{nebula}
	(pc)	(km s ⁻¹)	(×10 ⁴ yr)
S61	1.17	27^{a}	4.2
R127	1.65	30^{b}	5.4
R143	0.59	24^{c}	2.4
S119	1.90	25.5^{d}	7.2

Agliozzo et al. 2012 Agliozzo et al. 2015, in preparation

Extinction maps: evidence of dust?

Extinction maps: evidence of dust?

Extinction maps: evidence of dust?

Agliozzo et al. 2014, in preparation

0.8

6

Extinction maps: evidence of dust?

Agliozzo et al. 2014, in preparation

ALMA project

Dust properties for the simulation

1) T=100 K

- 2) chemical composition: graphite (worst case for absorption)
- 3) extinction map: R127

$$\tau_{336GHz} = (\kappa_{336GHz} / \kappa_{H\alpha}) \tau_{H\alpha} \\ I_{336GHz} = B(100K) \tau_{H\alpha}$$

Average flux density and continuum sensitivity required at 336.5 GHz

Source	Average Flux Density	Sensitivity
	$(mJy beam^{-1})$	$(mJy beam^{-1})$
R127	0.15	0.04

Model for the simulation with SIMOBSERVE

ALMA project

ALMA project

Proposed array setup

- 1) only main array (12m)
- 2) Band 7, Time Division Mode (continuum observations)
- 3) resolution: 1.1 arcsec (comparable with ATCA resolution) compact configuration
- 4) bandwidth: 7.5 GHz for high sensitivity
- 5) Single pointing (sources smaller than the maximum recoverable scale)

ALMA observations: in progress

2013.1.00450	2013.1.00450.S - Exploring the mass-loss history and the dust content in circ										Expl	loring the mass umstellar nebula	loss history a e around thre	and the dust come magellanic	ontent in Iuminous	Claudia Agliozzo <c.aglozzo@gmail.com< th=""><th>•</th></c.aglozzo@gmail.com<>	•
Entity					S	tatus	(Obs Tin	neline	2							
▲ 🛄 2013.1.0	0450.S				InProgre	SS		Re Frie	day, 20	6 Dec 2014							
Propo	sal								UT	c							
2013.1.00450.5	site at S - Explor	ring the ma	ass-loss l	history an	d the dust conter	Observed In circums	02:54:24 - 04:16:33 SchedBio Correlator Band				dBlock: rmc_12 lator BL ALMA F	7_a_07_1E 18 07	SE	BUID uid xecBlock uid	J/A001/X144/X5c J/A002/X97db9c/X1	1660	
Entity		-			Status	Req	Frequency 336.5 [GHz] QA0 Status Pass Requested Array Antennas DA02, DA49, DA55, DV09, DV18, DA50, DA43, DA52, DA45, DA00, DV05, DV10, DV07, DV14, DA64, DV22, DV20, DA54, DA48, DA63, D								ss 45, DA00, DV10, DV 48, DA63, DA46, D/	V12, DA4 A56, DA4	
▲ 📜 2013.1.004	2013.1.00450.S				Progress	Scien	ce Goal	: B7				DV02, D DV21	A51, DV17, DA5	8, DA61, DV11,	DA53, DV13, DV	15, DV06, DV04, DV	V25, DV06
🔺 📜 ObsUni	 ObsUnitSet 			Pa	artiallyObserved	Map	ies pina the	dus									
⊿ 🖺 SG	GOUS (B7 continuum: r127 - r143 - : PartiallyObse				artiallyObserved	Bor	formony						Weather Repo	ort			
⊿ 🖽 (Group OUS			Pa	artiallyObserved	Fei	iormanic										
.⊿ [월 Memb	er OUS (r	mc_127)	Pa	artiallyObserved	Des	sired noi	se Fric	lay, 26	Dec 2014	Pressure (bPa)	Temperature (PC)	Humidity (%)	Daw Baint (CC)	Wind direction (T) Wind speed	(mathe)
	rm rm	rmc_127_a_07_TE PartiallyO		artiallyObserved	Tara	unto I	02:	42 \	WSTB1	557.44	-5.00	29.59	-20.07	245.00	5.30		
						Targ	jets L	inev	١	WSTB2	557.46	-4.97	34.91	-18.10	309.00	2.60	
				rmc_	127	07-	57 1	VSTB1	557 47	-5.53	20.81	-20.45	250.00	3 20	PWV:		
						; rmc_	143	02.	<i>"</i> 1	WSTB2	557.49	-5.50	35.07	-18.52	316.00	2.90	
							40										PWV:
						al 4	18	03:	12 1	WSTB1	557.48	-5.35	30.39	-20.07	281.00	2.80	
				04	0 Report						557.50	-3.44	33.70	-10.14	331.00	4.40	PWV:
				9	lo Report			03:	27 \	WSTB1	557.47	-4.87	29.07	-20.16	292.00	3.70	
									1	WSTB2	557.49	-4.82	34.15	-18.24	335.00	4.90	DW/
Project Code	20 uid	13.1.0045	50.S					03:	42 \	WSTB1	557.34	-4.55	28.48	-20.12	291.00	5.50	FWV.
SchedBlock	uid	://A001/X	144/X5c	(rmc_12	7_a_07_TE)				1	WSTB2	557.34	-4.51	33.70	-18.11	324.00	4.40	
ExecBlocks	uid	://A002/X	97db9c/	X1b60	Pass												PWV:
Sources	J05	19-454, J	i4, J0538-4405, J0635-7516					03:	57 1	WSTB1 WSTB2	557.40 557.37	-4.71	29.36 34.60	-19.88 -17.94	278.00	4.30	
# Antennas Baselines	40	m 348n	n										34.00		310.00	5.00	PWV:
Band	AL	MA_RB_07	7 0001 [CI	u-1				04:	12 \	WSTB1	557.28	-5.93	31.41	-20.20	298.00	4.20	
Frequency	33	6.500000	0001 [G	HZJ					1	WSTB2	557.29	-5.94	36.75	-18.37	332.00	4.80	PWV-
Atmosphere Summary							04:	27 \	WSTB1	557.09	-5.50	31.96	-19.61	303.00	4.40		
Receiver Temperatures								1	WSTB2	557.10	-5.57	37.50	-17.80	341.00	6.30		
J0519-454@	ALMA_RE	3_07				J0519-454@	ALMA_R	B_07									PWV: 1
Antenna	Mea	an [°K]	RM	IS [°K]		Antenna	Me	an [°K]		RMS [°K]							
	хх	YY	xx	YY			хх	YY	ХХ	YY							
DA41	120.4	112.0	0.0	0.0		DA41	98.0	103.5	0.0	0.0							
DA42	86.2	100.0	0.0	0.0		DA42	90.2	91.8	0.0	0.0							
0442	070	025	100	0.0	1	DA42	0 00	72 5	100	0.0							

ALMA

ALMA

PWV: 1.402

PWV: 1.368

PWV: 1.425

PWV: 1.458

PWV: 1.381

PWV: 1.404

PWV: 1.371

PWV: 1.245

Is the LBV phenomenon indipendent of metallicity?

PRELIMINARY

LBVs in the LMC have

- nebular properties similar to those galactic (size 0.87-2.1 pc, ionized gas mass 0.8-1.5 M_o morphology, kinematical age)
- average mass-loss rates
- possibly presence of dust in density clumps

Implications

LBV phenomenon important in the evolution of galaxies and of the Early Universe

ATCA observations of 10 LBVs in the MCs

During P95 VISIR observations to complent the ALMA dataset and to derive physical properties of the dust content

Further: local metallicity studies to correlate the mass-loss properties with the environment

THANK YOU