LBV nebulae in the Large Magellanic Cloud: exploring the dust content in the ALMA era

Claudia Agliozzo¹

G. Umana², C. Trigilio², C. Buemi², A. Ingallinera¹, P. Leto², A. Noriega-Crespo³

- 1. Università degli studi di Catania
- 2. INAF-OACT
- 3. Spitzer Science Center-CALTECH

LMC as seen by Herschel (red 250 µm, green 100 µm) and Spitzer (blue 70 µm) Image credit: ESA/NASA/JPL-Caltech/STScI

Luminous Blue Variable Stars

PROPERTIES

Post-MS $M_{\rm MS}$ > 22 M $_{\odot}$

 $L\sim 10^5$ - $10^6~L_{\odot}$

Variable

 $t \sim 10^4 yr$

Spectral type O-B (30-20x10³ K) **A-F (**10-8x10³ K)

 $\dot{M} \sim 10^{-7} - 10^{-4} M_{\odot} \, yr^{-1}$ (stellar wind or outburst)

Luminous Blue Variable Stars

Rare objects (lifetime $\sim 10^4$ -10⁵ yr)

A recent census in the Milky Way reported:

12 confirmed LBVs 23 candidate LBVs A few reported in nearby galaxies: For ex. 22 objects in the Magellanic Clouds

Pistol Star and Nebula Hubble Space Telescope • NICMOS

PRC97-33 • ST Scl OPO • October 8, 1997 • D. Figer (UCLA) and NASA

Luminous Blue Variable Stars Most interesting aspects

Direct progenitors of Wolf-Rayet stars and core-collapse SN

Provide enrichment of processed material and mechanical energy

Dust producers in high-redshift galaxies?

Eta Carinae PRC96-23a · ST Scl OPO · June 10, 1996 J. Morse (U. CO), K. Davidson, (U. MN), NASA

Luminous Blue Variable Stars Open questions

Mass-loss mechanisms (steady wind or violent eruption)

Lifetime of the LBV phase

The total mass lost is a fundamental parameter to test evolutionary models.

A multiwavelength approach...

Three color image of G79.29+0.46 in the IRAC bands (red 8 μm, green 5.4 μm, blue 3.6 μm). Cygnus-X Spitzer Legacy Survey

 $D \sim 1.7 \text{ kpc}$

Multiple-shells i.d. different mass-loss episodes

Spitzer observations IRAC (3-8 μm) MIPS (24, 70 μm)

 $\begin{array}{c} T \sim 350 \text{ K} \\ \hline \\ \text{WARM DUST (d}_1 \sim 0.8 \text{ pc}) \\ \hline \\ \text{COLDER DUST (d}_2 \sim 1.6 \text{ pc}) \\ \hline \\ T \sim 80\text{-}110 \text{ K} \end{array}$

Umana et al. 2011, ApJL, 739, L11

EVLA observations

1,10 June 2010 Config. D, Band L+C

IONIZED GAS

1, 5 December, 2010 Config. C, Band L+C

> Umana et al. 2011, ApJL, 739, L11 Agliozzo et al. 2012, in preparation

IONIZED GAS and DUST coexist

 $\dot{\mathrm{M}}$ ~ 5 x 10⁻⁷ M $_{\odot}\mathrm{yr}^{-1}$

Umana et al. 2011, ApJL, 739, L11 Agliozzo et al. 2012, in preparation

Kinematical Age

 $v_{exp} = 30 \text{ km s}^{-1}$ $t_1 = 2.7 \times 10^4 \text{ yr}$ $t_2 = 5.4 \times 10^4 \text{ yr}$

Umana et al. 2011, ApJL, 739, L11

LBV Nebulae in the Large Magellanic Cloud

Smith & Owocki 2006, ApJ, 645, L45: LBV extreme mass-loss via eruptive episodes, driven by metallicity independent mechanisms.

LBVs important in the evolution of early universe massive stars.

LMC: laboratory to test if LBV is a metallicity independent phenomenon (D \sim 48.5 kpc , $Z_{LMC} \sim ^1\!/_2 ~ Z_\odot$).

HST observations

$\begin{array}{c} 1998 \\ \textbf{WFPC2} \\ \textbf{H} \alpha \textbf{-equivalent filter F656 N} \end{array}$

Weis 2003, A&A, 408, 205

$S_{\rm V} = 8.81 \times 10^6 T_e^{0.53} {\rm v}^{-0.1} {\rm YF}({\rm H}\alpha)$

VW.I NW.2

N* ↑

ATCA observations 18-20 April, 2011 **Config. 6km** Band 3+6 cm 20-22 January, 2012 **Config. 6km** Band 15 mm

195

Agliozzo et al. 2012, in preparation

Northern Cap

First radio detections of LBV nebulae in the LMC

© D. Smyth, CSIRO

arcsec

© D. Smyth, CSIRO

R127 λ =1.3cm

 $I_{MAX} = 0.14 \text{ mJy/beam}$

arcsec

Physical properties

F(1.3cm) = 0.14 mJy

 $\dot{M} \sim 2 \times 10^{-5} M_{\odot} yr^{-1}$

Waller,

1.5 **Current-day mass-loss** $\dot{M} = 6.7 \times 10^{-4} v_{wind} F^{3/4} D^{3/2} (v \times gff)^{-0.5}$

Smyth CSIRO

Physical properties

 $n_e \sim 100 \text{ cm}^{-3}$ $M_{\text{ionized}} = 1.2 \text{ M}_{\odot}$ $t_{\text{nebula}} = 2 \times 10^4 \text{ yr}$ $F_{\text{UV}} = 2 \times 10^{46} \text{ s}^{-1}$ Spectral Type > B1

$$\tau_{ff} = 8.24 \times 10^{-2} T_e^{-1.53} v^{-2.1} E$$
$$EM = \int n_e^2 dl$$
$$F_{UV} = \frac{M_{ionized} \beta_2 n_e}{m_p}$$

R127 λ =1.7cm

Evidence of dust

@ D. Smyth, CSIRO

Evidence of dust

Evidence of dust

Evidence of cold dust in MCs LBV

R71

Spitzer (IRAC+MIPS)

Herschel (PAC+SPIRE)

Boyer et al. 2010, A&A, 518, L142

Dust torus (carbonaceous)

B(T = 100 K) $\tau_{ALMA} = \frac{\kappa_{ALMA}}{\kappa_{H_{\alpha}}} \tau_{H_{\alpha}}$ $I_{ALMA} = B(T = 100 K) \times \tau_{ALMA}$

Band	Frequency [GHz]	Angular Resolution ["]	Maximum Scale ["]	Tbc	Flux	Tbl	Field of View
				[mK]	[mJy]	[K]	["]
Properties of the Compact Configuration (baselines of \sim 18 m to \sim 125 m)							
3	100	5.3	21	0.65	0.14	0.030	62
6	230	2.3	9	1.0	0.20	0.029	27
7	345	1.55	6	1.8	0.37	0.043	18
9	675	0.80	3	15	3.2	0.27	9
Properties of the Extended Configuration (baselines of ~36 m to ~400 m)							
3	100	1.56	10.5	7.6	0.14	0.35	62
6	230	0.68	4.5	11	0.20	0.34	27
7	345	0.45	3.0	20	0.37	0.50	18
9	675	0.23	1.5	175	3.2	3.1	9

Table 2. Properties of ALMA Cycle 0 Array Configurations

Band 7 (345 GHz) Bandwidth 7.5 GHz Config. Compact

I = 0.02 mJy/pixel (pixel=0.1") Beam 0.45"x0.45" I = 0.5 mJy/Beam Time on source = 40 min (3σ)

Band 7 (345 GHz) Bandwidth 7.5 GHz Config. Extended

Analysis of the dust

 $\frac{I_{700GHz}}{I_{345GHz}} = e^{-h(700-345)/KT} \left(\frac{345}{700}\right)^3 \frac{\tau_{700}}{\tau_{345}}$

 $I_{\rm V} \approx B_{\rm V}(T) \, \tau_{\rm V}$

 $\tau = \kappa_{dust} \rho_{dust}$

 $\int \rho_{dust} l dA = M_{dust}$

Conclusion

Multiwavelengths (ALMA+ATCA) – different CSE components

Morphology of ionized gas (ATCA) and dust (ALMA)

 $M_{nebula} = M_{dust} + M_{neutral gas} + M_{ionized gas}$

Current-day Mass-Loss + Kinematical Age of the nebulae