Self-calibration Overview and line-continuum case study

Anita M.S. Richards, UK ARC Node, Manchester, with thanks to Fomalont, Muxlow, Laing, ALMA, e-MERLIN, DARA teams & '*Synthesis Imaging*

- 'Principles' and practice
 - Effects of ϕ & amp errors
- Whento self-calibrate
 - Strategies for setting params
- Clean Component models
- VY CMa SV data
 - Use line peak or continuum?
 - Transfer between spw

EUROPEAN ARC ALMA Regional Centre || UK

MANCHESTER

AERLIN

adioNet

Why self-calibration?

- Improve the image signal-to-noise ratio and fidelity (response to extended/faint structure)
- The atmosphere is similar, not identical, above the target and above the phase-ref
 - Offsets in distance and time
 - 1° angular separation \equiv 4 min time (4^m RA at low Dec)
- The phase-ref model may not be perfect
- The phase-ref may be fainter than the target, so solutions are less accurate
- There may be no phase-reference at all!
- Maybe aligning data sets taken at different times
 Position, flux scale (subtract variable components!)

When to self-calibrate

- What noise expected for actual duration & conditions?
 - Should you self-calibrate even if you have reached it?
 - Maybe!
 - See discussion on aligning astrometry/photometry
 - Low-level phase errors may add negligible noise but distort flux distribution, obscurring detail

– ALMA LB 'basket-weave' background

- What dynamic range is possible?
 - VLA, WSRT, (e-)MERLIN >1 000 000 (*Perley, Smirnov, Laing, Muxlow*)
 - ALMA ~100 000 (*Fenech*)? Anyone got better?
- More usually, expect e.g. 500, start from 100...
 The fewer antennas, the more potential improvement

Prior calibration

- Apply instrumental corrections
 - $T_{\rm sys}$, WVR etc.
- Edit obvious bad data
- Derive and apply frequency- and timedependent corrections from astrophysical sources
 - Bandpass, flux scale
 - Phase-ref. phase and amp. corrections
 - Phase-ref close to target
 - Sky **almost** the same
 - But not quite!

Phase transfer accuracy

- Sky separation
 - Raw calibrator phase change $d\phi_{atm} \sim \pi$ per ~20 min
- Assume Dec 0°

- Phase-ref: target separation, say $d\theta = 2^\circ = 120$ arcmin
 - Convert θ in degrees to 'R.A.-like' units of time
 - (dθ/360°) x cos(Dec.)x 24hr ~7.5 min at Dec. 20°
- In 7.5 min, $d\phi_{atm}$ gives $\pi/8 \sim 65^{\circ}$ phase change
 - Phase corrections from the phase-ref may have up to ${\sim}65^\circ\,$ error when applied to the target

Phase referencing & self-cal

01.00

Primary beam

Target

 Self-cal like having a phase-ref in the primary beam

Phase-ref

 If target is faint, another source in-beam may be useable

No time offset

No angular offset with respect to sky distortion

Except some cases at $\lambda \ge 20$ cm

Sky almost, not quite the same

Telescope nods between sources

Calibration errors and dynamic range

• Dynamic range $D_{\rm B}(\phi_{\epsilon})$ due to phase errors ϕ_{ϵ} (in radians) on all baselines, per scan for N antennas ~ N / ϕ_{ϵ}

– e.g. radians (5°)~0.09 e.g. N 40 gives $D_{\rm B}(\phi_{\epsilon})$ ~440

- Dynamic range $D_{\rm B}(\varepsilon)$ due to fractional amplitude errors ε on all baselines, per scan ~ N / ε so $D_{\rm B}(\varepsilon)$ ~400
- A phase error of 5° is as bad as a 10% amp error
- Phase errors are sin (odd), amp are cos (even)
- Phase errors are asymmetric (mirror) function in image
- Amp errors are symmetric function in image
- See Perley in NRAO 'Synthesis Imaging'

Phase effects in many scans

Averaging phase fluctuations causes amp decorrelation

- Visibility
$$V = V_0 e^{i\phi}$$
 so $\langle V \rangle = V_o \langle e^{i\phi} \rangle = V_o e^{-(\phi_{rms}^2)/2}$

- Δt is interval after which phase errors independent
 - $-\Delta t$ > scan (phase-ref:target cycle)
 - $\Delta t \sim$ duration of EB, ~30 min? Shorter on long baselines
- Phase errors ϕ_{ϵ} affecting all baselines limit dynamic range of *M* intervals Δt to ~ $\sqrt{M} N / (\sqrt{2} \phi_{\epsilon})$
 - e.g. *M*=2, *N*=35
 - $-\phi_{e} = 20^{\circ} = \pi/9$ (~0.35) rad ~ 6% amp decorrelation
 - Dynamic range $D_{\rm B}(all)$ < few100 (typical ALMA limit pre-selfcal)

NGC 3254 phase & amp errors

Residual errors (model deficiencies?)

L2 Pup before & after self-cal

Target phases selfcal TDM spw

UVdist (m)

- Initial per-scan phase solution improves S/N 500%
 - 30s phase solutions
 - per-scan amp & phase
 - another 40% improvement
 - Lines benefitted
 - L2 Pup B Kervella+'16

Self-calibration overview

- Visibility data, phase-ref etc. corrections applied
 - Initial model:
 - First image from V
- Compare data with model
 - Derive gain correction factors per antenna using χ^2 minimisation
- Apply gain corrections to data and image again
- Repeat cycle until image reaches noise/dynamic range limit and model matches data (allowing for noise)

based on Luke Hindson's DARA slides

What solution interval? minimum

- Require S/N \geq 3 per solint dt_{min} per antenna
 - − $\sigma_{ant} \leq P/3$ in dt_{min} where *P* is peak on longest baselines
 - $\sigma_{array} = \sigma_{baseline} / \sqrt{[N(N-1)/2]}$
 - Each antenna has (N-1) baselines
 - Two additional degrees of freedom:
 - phase (or amp) correction; origin of phase (or flux scale)
 - $\sigma_{ant} = \sigma_{baseline} / \sqrt{[(N-3)]}$
 - $\sigma_{\text{ant}}(\text{d}t_{\min}) \leq \sigma_{\text{array}}(\text{tot.}t) \sqrt{[\text{tot.}t / \text{d}t_{\min}]} \sqrt{[(N(N-1)/(2(N-3))]}$
- $dt_{min} \ge [\sigma_{array}(tot.t)/P/3]^2 tot.t [(N(N-1)/(2(N-3)))]$
 - NB S/N improves with calibration

What solution interval? maximum

- Solint dt_{max} < timescale for significant changes
 - Amp & ϕ change due to source structure as well as errors ϵ
 - Fast phase rate if peaks far from centre
 - Usual 'upper limit' for phase rate is $d\phi < \pi/4$ per dt
 - Inspect visibility phases for rate and for scatter
 - S/N (amplitude/ σ_{rms}) per antenna usually must be >3
 - Including longest baselines to refant (plot amp v. uvdist)
 - Noise σ_{rms} estimate from sensitivity calculator or image???
 - Can you reach S/N > 3 in dt_{max} ?

In practice...

- Inspect phase (refant & *) you want to correct
 - What interval shows systematic drift?
 - Not just noise that can't be calibrated away!
 - Average by channel as appropriate (see next slide)
 - Maybe average pols &/or spw?
 - Can be offsets
 - Phase-ref refant issues, atmospheric transmission differences
 - Try longer solint, per spw/pol first
 - Apply solutions, shorter solint, average in other dimensions
- Longer solint does not always improve solution accuracy
 - Shorter solint may fail less often
 - e.g. bright but offset target

In practice...

- Inspect phase (refant & *) you want to correct
 - What interval shows systematic drift?
 - Not just noise that can't be calibrated away!
 - Average by channel as appropriate (see next slide)
 - Maybe average pols &/or spw?
 - Can be offsets
 - Phase-ref refant issues, atmospheric transmission differences
 - Try longer solint, per spw/pol first
 - Apply solutions, shorter solint, average in other dimensions
- Longer solint does not always improve solution accuracy
 - Shorter solint may fail less often
 - e.g. bright but offset target

Inspect phase v. time

0:981 initial phases to refant Zoom in on one 200 VY CMa brightest channel 150 scan 100 12-s averaging Mostly ~1 min drifts -50 -100 -- Small scatter -150 --200 -11:08:20 11:16:40 11:25:00 11:33:20 11:41:40 11:50:00 11:58:20 12:06:40 Time (from 2013/08/17) (hh:mm:ss)

- Faster rate in last scans?
- Plenty of S/N

Inspect phase v. time

- Zoom in on one scan
 - 12-s averaging
- Mostly ~1 min drifts
 - Small scatter

- Faster rate in last scans?
 - Sudden change
 - One antenna
 - Exclude at first
 - Then calibrate
 - Shorter solint

Channel averaging gotcha's

- Line: best S/N on all baselines
 - Highest peak may be extended spatially
 - Broad twin-peaked line probably optically thin, diffuse
 - Narrow inverted-V peakhigh-excitation, compact, accelerating transition
 Peak but
 - Highflux on long baselines
- Don't over-average
 - Peak chan 1 Jy, S/N 100
 - Narrow line
 - $\Sigma(3-chan) = (1+0.2+0.2) \text{ mJy}$
 - $S/N = 100 \times 1.4 / \sqrt{3} = 68 worse$

500

Model constraints

- Parameterised model (FT in visibility plain)
 - Traditional (delta function) Clean Components
 - Multiscale Clean may work
 - Beware artefacts around elongated narrow features!
- Can self-calibrate in full polarization
 - Get total intensity phases right first
 - Also OK to calibrate total intensity amps first?
- Is target spectral index α significant?
 - Check correct phase-ref $\boldsymbol{\alpha}$ (or normalisation) used
 - Generally, use nterms=1 for initial ϕ -only self-cal
 - Use nterms ≥ 2 for image *before* & during amp self-cal!

Model constraints

- Usually, applycal calwt=False during self-cal
 - Noisiest antennas are most important to correct
 - Usually best to use natural weighting or robust ≥ 0.5
- If necessary start with low minsnr e.g. 2
 - applycal applymode='calonly' will pass failed solutions
 - Avoid flagging salvagable data due to poor model
 - Or, if failed solutions are really bad data, 'calflag'
- Include all significant flux
 - but build up slowly, iteratively, if in doubt
 - Real source details will reappear if not included at first
 - Artefacts can become frozen in to model

 less of a risk if uv coverage is good
 - Don't apply primary beam correction until finished!

Iterative self-calibration

- Usually, phase-only first
 - You may need to do a number of rounds of self-cal
 - Improve model and/or shorten solint
 - Aim is to get morphology right total extent of source
 - If channel selection, check spectrum/another line image
- Then, if enough S/N, amp and phase
 - Start with a longer solint than for phase-only
 - Occasionally, an antenna is very mis-scaled (e.g. bad T_{sys})
 - Make model excluding bad antenna if possible
 - Try initial v. long-time, amp self-cal, normalise if necessary
- Iterate only if model improved or parameters changed
- Cumulative or progressive?
 - Keep track of calibration tables

Calibration table consistency

Final image (final applycal calibration all in **corrected** column)

Preparing model for self-cal

- Take care in setting mask (clean boxes)
 Clean Components to be used as model
- Mask conservatively for initial models for phase self-cal
 - CC should trace emission
 - but -ives are part of data
 - Beware 'pile-ups' at mask edges.
- Make sure all flux is in model for amplitude self-cal
 - If in doubt, normalise solutions
 - Flux might go up (~10% at most) as phase improves
 - Should never go down!

Difficulties in starting model

- Not easy to edit CC in CASA (need toolkit)
 - Get mask right
 - NB negatives genuine part of an interferometry image!
- No phase-referenced model?
 - Ready-made image CC from other obs?
 - e.g. shorter baseline, higher freq.
 - Use for initial phase self-cal for structure
 - More similar than exact flux
 - Start with point model, build up slowly
 - Select uvdist based on prior knowledge
 - Long b'lines if point(s)-dominated
 - Taper if complex/extended

No mask - spurious CC Faint, so probably not serious

Difficulties in starting model

- Bad phase referencing at some times/baselines?
 - Cycle 0 B9 IRC+10216 phase wrap between ϕ -ref scans
 - Mickey Mouse self-cal model contaminated all data
 - Exclude bad data for starting model
 - Use as model for all target data

Initial continuum contours over ²⁹SiS total intensity All lines same shape????

Difficulties in starting model

- Bad phase referencing at some times/baselines?
 - Cycle 0 B9 IRC+10216 phase wrap between ϕ -ref scans

37000 Right Ascansion (pressed

Arc seconds

Good model

Decin+'15

undistorted images

- Mickey Mouse self-cal model contaminated all data
- Exclude badly-calibrated data for 1st image
 - Use first 2 scans for model for all target data
 - Add last scans to later self-cal rounds

target with phs-ref corrections DV04&DV13

200

CASA Guide ALMA self-cal

- NGC3256 (δ -44°) Band 3: Continuum, CO and HCN
 - CASA Guide uses continuum
 - Can also use CO peak to self-cal and apply to all data
- Apply instrumental, bandpass, fluxscale, phase-ref cal.
- ~180 min on-target
- 7 antennas on average
- Plot visibility spectrum, identify peaks
 - CO peak spw 0:63~64, ~4 Jy
 - 2 chans = 31.25 MHz @~114 GHz
 - Sens. Calc. σ_{rms} ~0.9 mJy/bm

CO peak self-cal solint

- $dt \ge [\sigma_{array}(tot.t)/P/3]^2 tot.t [(N(N-1)/2(N-3)])$
 - $-\sigma_{array}(tot.t) \sim 0.9 \text{ mJy/bm}$ (s. calculator)
 - In tot.*t* ~180 min
 - $-N = 7; P \sim 500 \text{ mJy/bm}$
 - dt ≥2 sec (in practice, t_{int} 6 sec)
- In this instance, other factors limit dt
 - First map noise ~90 mJy
 - ~100 x $\sigma_{array}(tot.t)$ (theoretical)!
 - Dynamic range limitations
 - Inspect actual phase and amplitude rates of change

Spectral sensitivity

- Beware dynamic range limit in narrow channels
 - Poorer uv coverage means worse sidelobes

CO peak 2 channels All continuum channels

30.000

20,000

10.000

-10,000

-20,000

Vwave

- Dirty maps
 - Color scale of each is relative to peak

CO peak is spatially extended

- Apply phase-ref etc. corrections, image
 - FT of image CC is left in MS
 - Model for 5-min phase-only self-cal
- Apply, image again
 - Better model so shorter solint next time
- Apply, image again
 - Symmetric errors
 - snr high enogh for amplitude self-cal

Compare model with data

First model missing a lot of extended flux
 Use for phase-only (not amp) selfcal

Compare model with data

• Vast improvement after just one round of self-cal

spw 0:63~64 applied to spw 1

CN line still there, better snr line and continuum – OK!
 – Need good bandpass to transfer solutions between spw

Complete self-cal of CO peak

- Signal-to-noise improved from 14
 - to 550!
 - First σ_{rms} 83 mJy/bm
 - Peak 1212 mJy/bm
- After all calibration:
 - Peak 1866 mJy/bm
 - σ_{rms} 3.3 mJy/bm
 - \sim 3.5 x theoretical
 - Dynamic-range limited?
 - Could try more editing?
 - Use single channel model?
 - after first phase self-cals

Self-cal of CO line peak

Apply phase-ref etc. corrections, split out corrected target

Identify line peak, clean image

1 gaincal 'p' solint 5min 5min-phcal

/ 5min-phcal, clean *snr improves*

2 gaincal 'p' 30s-phcal Apply 30s-phcal, clean

snr improves but symmetric artefacts

- 3gaincal 'ap', solnorm T, apply 30s-phcal, make 5m-apcalApply 30s-phcal, 5m-apcal, cleansnr improves
- 4 gaincal 'p' apply 30s-phcal, 5m-apcal make int-pcal Apply 30s-phcal, 5m-apcal, int-pcal, clean

need v. good model snr improves

gaincal 'ap', solnorm F, apply 30s-phcal, 5m-apcal, int-pcal, make 30s-apcal
 Apply 30s-phcal, 5m-apcal, int-pcal, 30s-apcal, clean snr improves a bit

1,2: Replace old solutions with those from better model**3,4,5**: Accumulate solutions to optimise amp. calibration

Extended sources self-calibration

- Start with data with phase-ref etc. corrections applied
- Make first image, box carefully, don't clean too deep
- Estimate minimum possible solution interval t_{min}
 - If t_{min} >scan, use t_{min} as solint
 - If $t_{\min} < \text{scan}$:
 - If potential snr >> snr of first image, use scan as solint
 - If initial snr is close to ideal, model good, use t_{int}
 - Start with calmode 'p', usually minsnr 3
 - Improve model, clean more, decrease solint if pos.
- Amplitude cal needs better snr i.e. longer solint
 - Apply 'p' corrections when using calmode 'ap'
 - Normalise solutions unless model is very good
- Stop when no further improvement/ideal snr reached

Self-calibration checks

- Check in logger not too many failed solutions
- Also see terminal messages
 - May be all failures at just one time interval out of many
 - Or may be just a few but all to the crucial distant antenna...

Log Messages (kali:/home/amsr/scratch/ALMA/CASANOTES/NGC3256/SELFCAL/casapy.log)	$\Box \times \Box$				
<u>F</u> ile <u>E</u> dit <u>V</u> iew					
🔚 🔚 🚔 📳 📈 💭 Search Message: 🥢 🍂 🝸 Filter: Time 🖨 🦳 🕈	ī C				
Origin Message					
<pre>gaincal: The following calibration term is arranged for solve: gaincal: G Jones: table=cal-ngc3256_cont_30m.Gp append=false solint=1800s ref gaincal: Solving for G Jones gaincal: Combining scans.</pre>					
<pre>gaincal: For solint = 1800s, found 48 solution intervals.</pre>					
gaincal: Found good G Jones solutions in 48 slots.	-				
Insert Message: 🛛 🚽 🌈 🖉 🗆 Lock scroll					

Self-calibration checks

- Plot solutions
 - If they look like noise, don't use!
 - Check you used the right model and any pre-applied cal
 - Edit data if only parts look really bad
 - Increase solint if less than a scan or so, source faint
 - But keep shorter than phase change of $\pi/4$, amp structure
- Succesive rounds of self-cal should improve
 - Phase/amp solutions should approach 0/ 1
 - See above if solutions diverge
- Image, check snr is increasing, position not shifted
- Compare model with data is it converging?
- Check other spw's etc. also improved if relevant

Astrometry

- Target position is not known accurately?
 - Use pre-self-cal image to measure astrometric position
 - This is the most accurate position you can measure
 - Limited by φ-ref solution & antenna position accuracy, separation on sky, etc. (Ed's the expert!).
- Use this image as self-cal model for good astrometry
- Compact target?
 - Reverse roles with ϕ -ref
 - Apparent φ-ref offset x -1
 gives target position

Frequency Dependence

- Continuum source spectral index $\alpha\,$ in amp self-cal
 - $-S_1 = S_0 \; (v_1/v_0)^{\alpha}$
 - $S_0/(S_1-S_0) = 1/[(v_1/v_0)^{\alpha} 1]$

= (flux density / flux density difference between spw)

- e.g. spw0 @ ν_0 =100 GHz; spw2 @ ν_1 =102 GHz
 - $S_0/(S_1-S_0) = 1/[(102/100)^{\alpha} 1]$

 $-\sim$ 25 if α = 2

- If S/N > 25, use nterms = 2

Atmospheric refraction is linear function of frequency

 interp= 'nearestPD' etc. if extrapolating far in frequency

Mosaics

- Apply brightest-field solutions to whole mosaic
 - Sgr A* compact ~4-Jy central continuum peak
 - In this case, amplitude may be variable
 - Phase-only self-cal
 - Could use other fields and/or subtract variable core

Aligning different observations

- Flux scale
 - Phase-ref variability
 - 5-10% uncertainty (more at higher bands)
 - Model uncertainty/short-term variability of flux standard
 - Transfer of solutions between cal sources
 - CASA optimisation tends to overestimate noisy spw flux
 - Select best spw if necessary in fluxscale
 - Spectral scans
 - If possible, self-calibrate on continuum
 - Check if spectral index and/or gain scaling for atmosperic refraction is required for very wide frequency ranges
 - Tools for alignment e.g. Nordic node Specscan
- If self-cal on line use mstransform first to shift to constant velocity
- Use freqtol and dirtol in concat as needed

Combining data and missing spacings

- Betelgeuse (O'Gorman et al, Kervella et al.)
 - Star worse with 3 EBs variability
 - Extended lines better!

- Missing spacings
 - Can ignor if good image
 - What if artefacts?

VY CMa SV data

- August 2013, 19 antennas, up to 2.7 km baselines
- Three observations x 3EB around 321, 325, 658 GHz
- Here, just one EB with two spw at 325 GHz, 313 GHz
 - All 'QA2' calibration applied, VY CMa split out
 - Extra averaging
 - 1920 chan/spw
 - 12-s integrations
 - 100s Jy maser at 325 GHz
 - Awful atmosphere
 - Calibrate on maser?
 - continuum?
 - mix?
 - another line?

VY CMa 325 GHz long-ish (2.7 km) b'lines

- 'Basket weaving' suggests long baseline errors
 - Usually phasedominated
 - Peak incr.
 184 224 Jy
 - S/N x 18 improvement
- Single channel dynamic-range limited

Self-calibration on line

- mstransform to constant velocity after QA2 calibration
 - Multiple EBs combined?
 - Check concat tolerances have combined spw properly
- Select brightest compact line
 - Fewest channels for good S/N if morphology shifts
 - Self-calibrate before continuum subtraction
 - Better continuum selection after calibration
 - More accurate subtraction
- Phase, then ap
 - Periodically check resolved line in other spw
 - Stop when no improvement in model/reduction in solint
- Make low-resolution cube to identify continuum
- Image continuum with multiscale
- uvcontsub, image lines

Spectra: *uv* v. image planes

(Y)

Self-calibration on continuum

- mstransform to constant velocity after QA2 calibration
 - Multiple EBs combined?
 - Check concat tolerances have combined spw properly
- Select continuum
 - Hard to do accurately from uv spectrum
 - Make test cube first?
 - Err on side of rejecting too much for self-cal
 - Avoid lines contaminating flux scale
- Phase, then ap
 - Stop when no improvement in model/reduction in solint
- Make low-resolution cube to identify continuum
- Image continuum with multiscale
- uvcontsub, image lines

Monitoring progress

11:50:0

11:08:2

11:16:4

11:25:00

Time (from 2013/08/17) (hh:mm:ss)

11:58:20

12:06:40

11:08:2

11:16:40

11:25:00

Time (from 2013/08/17) (hh:mm:ss)

11:58:20

11:50:00

12:06:40

Final images - which method wins?

J2000 Right Ascension

J2000 Right Ascension

		Line	Continuum
Dust	peak	0.223	0.183
continuum	rms	0.00014	0.0006
Ју	S/N	160	? 305
Maser	peak	1225	1140
mom0	rms	4.6	5.0
Ју	S/N	266	228
NaCl	peak	5.23	5.89
mom0	rms	0.014	0.014
Ју	S/N	374	420

CASA complications

- (t-)clean does not always insert useable model
 - Check savemodel/usescratch parameters
 - If you want a virtual model in tclean:

– If tclean stopped manually, re-run with

savemodel='virtual', calcres=False, calcpsf=False

- Or use scratch column, or insert model with task 'ft'
 - Safest for complex transfers of calibration anyway
- Want to inspect phase etc. in plotms
 - plotms can't average a complicated continuum selection e.g. spw='0:5~17;34~127,1:3~9;90~127'
 - Could back-up, flag lines and average?
 - If initial image S/N good (e.g. 100) just try anyway?

Your mission, should you choose to accept it...

- Best way to self-calibrate VY CMa
 - May be different for best maser or best thermal images
- Two scripts provided
 - blq.py (self-cal on maser)
 - blq_cont.py (continuum used for self-cal)
 - Solutions applied to all data in both cases
- Improve at will
 - Better models, different solints
 - Could start with line and then use continuum etc.
 - Compare continuum spw separately
 - Solve flux divergence

This event has received funding from the European

Union's Horizon 2020 research and innovation

programme under grant agreement No 730562

[RadioNet]