Synchrotron Polarization with ALMA

Robert Laing (ESO)

Synchrotron radiation basics

Ultrarelativistic electrons (positrons) spiralling in a magnetic field

- Spectrum of radiation from a single electron is broad, peaked around the critical frequency $v_{c}/Hz = 4.2 \times 10^{10} \gamma^{2}(B/T)$
- Electron energy distribution typically a power law $n(E) dE = n_0 E^{-(2\alpha+1)} dE$
- Intensity spectrum (if optically thin) is then also a power law with $I(v) \propto v^{-\alpha}$ with $\alpha \ge 0.5$
- High degrees of linear polarization are possible, up to a maximum $(3\alpha+3)/(3\alpha+5) \approx 0.7$ for an ordered field
- Emissivity \propto (Bsin θ)^{α +1} for a uniform field at angle θ to the line of sight

Synchrotron basics (2)

- For a uniform field, the polarization E-vector is perpendicular to the projection of the field on the sky (if there are no propagation effects)
- What I call the apparent field direction is the perpendicular to the observed E-vector in the absence of propagation effects

What can we learn from observations of synchrotron polarization?

- Field structure
 - Integration along the line of sight
 - 3D structure is not a fully determined problem, but we can eliminate some specific models
- Vector ordering
 - Synchrotron emission does not distinguish between + and field directions
 - Can be hard to tell a 'grand design' (e.g. helical) field from one which is disordered on small scales, but anisotropic
- Trace shocks and compression
 - B components perpendicular to shock/compression wave are amplified

Grand Design Helical Fields?

Helical fields generally produce brightness and polarization distributions which have asymmetric transverse profiles

The profiles are symmetrical only if:
there is no longitudinal component or
the jet is at 90° to the line of sight in the rest
frame of the emitting material

Helical Fields

 $\theta = 45^{\circ}$

$$\theta = 90^{\circ}$$

Synchrotron emission from a helical field with pitch angle 45°

An application: modelling relativistic jets

Why bother? Relativistic jets in AGN accelerate highest energy particles Deposit energy and momentum in IGM/ICM (feedback)

Why these objects?

Low accretion rate radio galaxies Jets are primary channel of AGN energy output Nearby, bright in radio \rightarrow lots of detail

How?

Deep VLA images in I, Q and U Jet flows are relativistic and intrinsically symmetrical Approaching and receding sides appear different in I and linear polarization (aberration) Model geometry, velocity field, particle distribution, B-field structure

What do we learn?

Geometry: measure inclination Velocities: jets decelerate and interact with IGM Fields: longitudinal+toroidal \rightarrow toroidal Particle acceleration: depends on jet speed

Model Fits

Observed and model vectors

9

Vector length proportional to p = P/I

Along the apparent magnetic field

Field components

What next?

All jets we have modelled so far are low-luminosity and decelerate

We suspect that powerful quasar jets remain relativistic on scales up to 100's of kpc, but have no good constraints

Need higher spatial resolution (0.05-0.1 arcsec) and better sensitivity

This is extremely hard even with JVLA

11

What about ALMA?

- Optically thin synchrotron emission has a ν^{-0.5} or steeper spectrum, and system temperatures/atmosphere are worse at high frequencies, so why observe with ALMA?
 - Resolution (mm VLBI)
 - Emission is optically thick, scattered or free-free absorbed at longer wavelengths
 - Faraday rotation is too high at longer wavelengths
 - There are real differences in structure between mm and cm (or m) wavelengths

mm-wave and y-ray emission

Marscher et al. (2012)

- AGN cores = optically thick jet bases; variable
- Polarization gives apparent field in brightest components (just optically thin at a given frequency)
- Combine with VLBI (new components, jet direction)

Structural differences?

 Differences in jet polarization are observed between (e.g.) radio and optical bands in M87 (Perlman et al. 1999)

Higher energy electrons trace different field structures?

Frequencies differ by a factor of 40 000

Faraday rotation

- Rotation of plane of linear polarization as radiation passes through a magnetised (thermal) plasma
- Normal modes are circularly polarized; propagation speeds are different

$$\Delta \Psi_{\mathrm{[rad]}} = \Psi(\lambda)_{\mathrm{[rad]}} - \Psi_{\mathrm{0[rad]}} = \lambda_{\mathrm{[m^2]}}^2 \mathrm{RM}_{\mathrm{[rad\,m^{-2}]}},$$

$$\mathrm{RM}_{[\mathrm{rad}\,\mathrm{m}^{-2}\,]} = 812 \int_0^{L_{[\mathrm{kpc}]}} n_{\mathrm{e[cm^{-3}\,]}} B_{z[\mu\mathrm{G}]} \mathrm{d}z_{[\mathrm{kpc}]} \,,$$

M87: Central cD of Virgo Cluster

Counter Jet Rim

Jet Cavity

VLA

12 30 47

6000

4000

Spitzer IRAC

Observe M87 in ALMA Band 3?

- Faraday rotation across Band 3 is only 3° for RM = 10000 rad m⁻² (the maximum on kpc scales for M87 – typical for cool core clusters)
- Therefore good for intrinsic field structure; less so for imaging Faraday rotation
- But there may be denser gas close to the nucleus

RM variations on sub-pc scales

Zavala & Taylor (2002)

Large variations in RM across jet

What are we looking through?

Galactic Centre

Can we do this for other accreting systems, using jets as background sources?

Galactic Centre Magnetar

Magnetar near the Galactic Centre

Shannon & Johnston (2013)

 $RM = -6.7 \times 10^4 \text{ rad m}^{-2}$

Observing Strategy for Faraday rotation

- For a point background source, can just increase the frequency resolution to the point that there is negligible rotation across a channel (cf. magnetar) – not much advantage in going to high frequency
- If the background source is resolved, and Faraday rotation varies across it, then depolarization is inevitable. Need to increase the observing frequency and/or resolution so that variations across the beam are small (and linear)
- Modern interferometers (VLA, ALMA) all have many spectral channels even in wide-band modes, so can use RM synthesis (Brentjens & de Bruyn 2005, Burn 1966)
- This does not help without good spatial resolution: cannot then distinguish variations of foreground rotation across the beam from mixed thermal and relativistic particles.

VLBI with ALMA

- ALMA phasing project
 - Phase up ALMA for use in VLBI
 - Ongoing (MIT Haystack/NRAO/MPIfR/OSO/...)
- Science targets
 - Sgr A* event horizon
 - M87 jet formation region
- Polarization?
 - Observations in full polarization possible
 - Initial 230-GHz observations have been made

M87 on sub-pc scales

-0.5

0

-1.5

-2

9

sub-pc polarization of M87

1 mas = 0.08 pc = 140 R_s

Polarization detected, so Faraday rotation cannot be too extreme

Can probably see the counter-jet in linear polarization

Craig Walker

Two Key Projects

- Probe magnetic fields in accretion flows through observations of Faraday rotation
 - Magnetic fields are essential in all models of accretion disc viscosity (MRI), but almost no observational constraints
 - Enormous Faraday rotations even in low-accretion rate flows (Galactic Centre)
 - Not observed in blazars (geometry?). so look at side-on systems using pc-scale jets as background sources
 - Try low accretion AGN (ADAF and relatives) + Sgr A*
- Image the jet and counter-jet of M87 on ~10R_s scales in linear polarization
 - Apply symmetrical relativistic jet models \rightarrow flow field
 - Simultaneously, measure proper motions
 - Test jet formation models, which predict field structure

More topics

- Magnetic fields in bases of jets which are optically thick, show free-free absorption or extreme Faraday rotation at cm wavelengths
- Blazar polarization monitoring; correlations with high-energy emission
- Circular polarization (probably from linear → circular conversion)
- Imaging of large-scale, optically-thin synchrotron emission is probably not a good idea.