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Synchrotron radiation basics

Ultrarelativistic electrons (positrons) spiralling in a magnetic 
field

 Spectrum of radiation from a single electron is broad, peaked 
around the critical frequency ν

c
/Hz = 4.2 x 1010γ2(B/T)

 Electron energy distribution typically a power law

                       n(E) dE = n
0
 E-(2α+1) dE

 Intensity spectrum (if optically thin) is then also a power law 
with I(ν)  ν∝ -α with α ≥ 0.5

 High degrees of linear polarization are possible, up to a 
maximum (3α+3)/(3α+5) ≈ 0.7 for an ordered field

 Emissivity  (Bsinθ)∝ α+1  for a uniform field at angle θ to the line 
of sight
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Synchrotron basics (2)

 For a uniform field, the polarization E-vector is 
perpendicular to the projection of the field on the sky 
(if there are no propagation effects)

 What I call the  apparent field direction is the perpendicular 
to the observed E-vector in the absence of propagation 
effects
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What can we learn from observations of 
synchrotron polarization?

 Field structure

 Integration along the line of sight

 3D structure is not a fully determined problem, but we can 
eliminate some specific models

 Vector ordering

 Synchrotron emission does not distinguish between + and - 
field directions

 Can be hard to tell a 'grand design' (e.g. helical) field from one 
which is disordered on small scales, but anisotropic

 Trace shocks and compression

 B components perpendicular to shock/compression wave are 
amplified



Grand Design Helical Fields?

Helical fields generally produce brightness
and polarization distributions which have
asymmetric transverse profiles

The profiles are symmetrical only if:
- there is no longitudinal component or
 the jet is at 90o to the line of sight in the rest
 frame of the emitting material



Helical Fields

       θ = 45o                                                                    θ = 90o

Synchrotron emission from a helical field with pitch angle 45o
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How?
Deep VLA images in I, Q and U
Jet flows are relativistic and intrinsically symmetrical
Approaching and receding sides appear different in
I and linear polarization (aberration)
Model geometry, velocity field, particle distribution, 
B-field structure 

Why bother?
Relativistic jets in AGN accelerate highest energy particles
Deposit energy and momentum in IGM/ICM (feedback)

Why these objects?
Low accretion rate radio galaxies
Jets are primary channel of AGN energy output
Nearby, bright in radio → lots of detail 

What do we learn?
Geometry: measure inclination
Velocities: jets decelerate and interact with IGM
Fields: longitudinal+toroidal → toroidal
Particle acceleration: depends on jet speed

An application: modelling relativistic jets
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Model Fits

Total Intensity I Q/I
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Observed and model vectors

Vector length proportional
to p = P/I

Along the apparent magnetic
field
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Field components
Longitudinal                                                  Toroidal
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What next?

All jets we have modelled so far are
low-luminosity and decelerate

We suspect that powerful quasar 
jets remain relativistic on scales up 
to 100's of kpc, but have no good 
constraints

Need higher spatial resolution 
(0.05-0.1 arcsec) and better 
sensitivity

This is extremely hard even with 
JVLA
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What about ALMA?

 Optically thin synchrotron emission has a ν-0.5 or steeper 
spectrum, and system temperatures/atmosphere are worse 
at high frequencies, so why observe with ALMA?

 Resolution (mm VLBI)

 Emission is optically thick, scattered or free-free absorbed  at 
longer wavelengths

 Faraday rotation is too high at longer wavelengths

 There are real differences in structure between mm and cm 
(or m) wavelengths
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mm-wave and γ-ray emission

 AGN cores = optically thick jet bases; variable
 Polarization gives apparent field in brightest 

components  (just optically thin at a given frequency}
 Combine with VLBI (new components, jet direction)

Marscher et al.
(2012)
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Structural differences?

 Differences in jet polarization are observed between (e.g.) 
radio and optical bands in M87 (Perlman et al. 1999)  

Higher energy electrons
trace different field 
structures?

Frequencies differ by a
factor of 40 000
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Faraday rotation

 Rotation of plane of linear polarization as radiation passes 
through a magnetised (thermal) plasma

 Normal modes are circularly polarized; propagation speeds 
are different
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Chandra                          VLA                    Spitzer IRAC
(Forman et al. 2007)

M87: Central cD of
Virgo Cluster

RM (Guidetti, RL, Owen)
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Observe M87 in ALMA Band 3?

 Faraday rotation across Band 3 is only 3o for RM = 10000 
rad m-2 (the maximum on kpc scales for M87 – typical for 
cool core clusters)

 Therefore good for intrinsic field structure; less so for 
imaging Faraday rotation

 But there may be denser gas close to the nucleus
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RM variations on sub-pc scales

Zavala & Taylor (2002)

Large variations in RM across
jet

What are we looking through?
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Galactic Centre
Marrone et al. (2007)
SMA

RM = -5.6 x 105 radm-2

Translates to a limit on
accretion rate if B is
in equipartition 

10-9 – 10-7 M
☉ 

/yr

(depends on geometry)

Poor λ2 fits, complicated
by variability

Can we do this for other accreting systems, using jets as 
background sources?
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Galactic Centre Magnetar

Magnetar near the Galactic
Centre 

Shannon & Johnston (2013)

RM = -6.7 x 104 rad m-2
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Observing Strategy for Faraday rotation

 For a point background source, can just increase the 
frequency resolution to the point that there is negligible 
rotation across a channel (cf. magnetar) – not much 
advantage in going to high frequency

 If the background source is resolved, and Faraday rotation 
varies across it, then depolarization is inevitable. Need to 
increase the observing frequency and/or resolution so that 
variations across the beam are small (and linear)

 Modern interferometers (VLA, ALMA) all have many spectral 
channels even in wide-band modes, so can use RM 
synthesis (Brentjens & de Bruyn 2005, Burn 1966)

 This does not help without good spatial resolution: cannot 
then distinguish variations of foreground rotation across the 
beam from mixed thermal and relativistic particles.
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VLBI with ALMA

 ALMA phasing project

 Phase up ALMA for use in VLBI

 Ongoing (MIT Haystack/NRAO/MPIfR/OSO/...)

 Science targets

 Sgr A* event horizon

 M87 jet formation region

 Polarization?

 Observations in full polarization possible

 Initial 230-GHz observations have been made



23

M87 on sub-pc scales

Walker et al.

Krichbaum et al.
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sub-pc polarization of M87

1 mas = 0.08 pc
= 140 R

S

Polarization detected,
so Faraday rotation
cannot be too
extreme

Can probably see the
counter-jet in linear
polarization

Craig Walker
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Two Key Projects
 Probe magnetic fields in accretion flows through 

observations of Faraday rotation

 Magnetic fields are essential in all models of accretion disc 
viscosity (MRI), but almost no observational constraints

 Enormous Faraday rotations even in low-accretion rate flows 
(Galactic Centre)

 Not observed in blazars (geometry?). so look at side-on 
systems using pc-scale jets as background sources

 Try low accretion AGN (ADAF and relatives) + Sgr A*

 Image the jet and counter-jet of M87 on ~10R
S
 scales in 

linear polarization

 Apply symmetrical relativistic jet models → flow field

 Simultaneously, measure proper motions

 Test jet formation models, which predict field structure 
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More topics

 Magnetic fields in bases of jets which are optically thick, 
show free-free absorption or extreme Faraday rotation at cm 
wavelengths

 Blazar polarization monitoring; correlations with high-energy 
emission

 Circular polarization (probably from linear → circular 
conversion)

 Imaging of large-scale, optically-thin synchrotron emission is 
probably not a good idea. 
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