The Atacama Large Millimetre Array

Marcella Massardi

ALMA Data Handling Workshop 9-12 February 2016

EUROPEAN ARC ALMA Regional Centre || Italian

ALMA rationale

The design of ALMA is driven by three key science goals:

- The ability to detect spectral line emission from CO or [CII] in a normal galaxy like the Milky Way at a redshift of z=3, in less than 24 hours

-> frequency bands, high sensitivity

-> study of star formation in galaxies up to high redshift, galaxy formation, ...

- The ability to image the gas kinematics in protostars and in protoplanetary disks around young Sun-like stars in the nearest molecular clouds (150 pc)

-> high and low angular resolution, high spectral resolution

-> study of processes of star and planet formation, stellar evolution and structure, astrochemistry, ...

- The ability to provide precise high dynamic range (=|image max/image min|) images at an angular resolution of 0.1 arcsec

- -> high angular resolution and sensitivity
- -> galaxy dynamics, AGN core mechanisms, imaging of exoplanets, comets, asteroids, ...

ALMA full array

The Atacama Large Millimeter Array is a **mm-submm reconfigurable interferometer**

Inaugurated in March 2013 on the Chajinantor plain (altitude=5000m, Chile)

50x12m main array Antennas: + **12x7m** ACA + **4x12m** Total Power • Baselines length: 15m ->150m-16km 9m->50m + • Frequency range: **10 bands between 30-900 GHz** (0.3-10 mm) ٠ Bandwidth: 2 GHz x 4 basebands ٠ Polarimetry: Full Stokes capability ٠ As narrow as 0.008 × (Freq/300GHz) km/s Velocity resolution: • ~0.003 km/s @ 100 GHz, ~0.03 km/s @ 950 GHz

ALMA sites

- AOS: ALMA Operations Site (5000m): Antennas, Correlator
- OSF: Operations Support Facility (3000m): Labs, Antenna Assembly & Maintenance Operators, Astronomers
- SCO: Santiago Central Office:
 - Call for Proposals
 - Running ALMA
 - Data Reduction Pipeline
 - Initial Quality Assessment

ALMA observing site & bands

Chajinantor transmissivity chart at various PWV conditions

Dry site → lower Tsys and higher frequencies observable

ALMA array(s)

Atacama Compact Array

$$\sigma_{\rm S} = \frac{2 \, k \, T_{\rm sys}}{\eta_{\rm q} \eta_{\rm c} A_{\rm eff} \sqrt{N(N-1) \, n_{\rm p} \, \Delta \nu \, t_{\rm int}}}$$

Main Array: 50x12mReconfigurable between $15m \rightarrow 150m-16km$

Atacama Compact Array:

12x7m between 9 → 50m +4x12m single dish

Large number of antennas \rightarrow large collecting area \rightarrow high sensitivity

ALMA array(s)

Large number of antennas

- → large number of baselines
- → good istantaneous uv-plane coverage
- → good imaging in short time

(See tutorial on UV plane)

ALMA arrays

ALMA array(s)

ALMA main array reconfiguration

ALMA main array reconfiguration

ALMA resolution & LAS

configurations

Frequency	Maximum Recoverable Scale without ACA ^{2,3}	Coarsest allowed angular resolution ^{2,3,4}	Finest achievable angular resolution ^{2,3,5}
(GHz)	(arcsec)	(arcsec)	(arcsec)
100	25.3	6.8	0.075
150	16.9	4.6	0.050
230	11.0	3.0	0.030
345	7.3	2.0	0.034
460	5.5	1.4	0.060
650	3.9	1.0	0.040
870	2.9	0.8	0.030

Maximum Recoverable Scales for ACA 7-m

Frequency (GHz)	Maximum Recoverable Scale ^{1,2} (arcsec)
100	42.8
150	28.5
230	18.6
345	12.4
460	9.3
650	6.6
870	4.9

Mosaicking

Largest angular scales than that available to the shortest baseline cannot be observed.

Details in the ranges available to the given baselines can be observed on larger region of the sky by mosaicking the region.

mm-VLBI with ALMA

VLBI is a worldwide network of telescopes that matches simultaneous observations in different sites, exploiting the phase information to construct a world-wide interferometer.

At 1 mm and a baseline of 9000 km offers resolution of about 20 microarcseconds ALMA will increase the sensitivity by more than an order of magnitude

This capability will allow the shadow of the event horizon in the black hole at the Galactic Centre , the relativistic jet flows in AGN and the dusty winds near stellar surfaces to be imaged

u (Gλ)

ALMA spectral properties: receivers

Table A-4: Properties of ALMA Cycle 3 Receiver Bands

Band	Frequency range ¹ (GHz)	Wavelength range (mm)	IF range	Туре
3	84 - 116	3.6 – 2.6	4 - 8	2SB
4	125 – 163	2.4 - 1.8	4 - 8	2SB
6	211 – 275	1.4 - 1.1	5 – 10	2SB
7	275 – 373	1.1 - 0.8	4 - 8	2SB
8	385 – 500	0.78 – 0.60	4 – 8	2SB
9	602 – 720	0.50 - 0.42	4 - 12	DSB
10	787 – 950	0.38 - 0.32	4-12	DSB
	-			

Receivers are couple of dipoles, so split the signal into **2 polarizations** By combining the indipendent polarizations chains it can reconstruct all the Stokes parameters

The coherent receivers map two frequency regions to an fixed Intermediate Frequency by mixing the signal with a Tunable Local Oscillator.

Hence the set up is constituted by a Lower Sideband, a gap, and an Upper sideband centered at a certain rest frequency

The gap size and the width of the sidebands are fixed (depends on the IF) but might be different in different bands The PI can chose the RF (i.e. tune the LO)

ALMA spectral properties: receivers

The receivers allows up to 4 x 2 GHz-wide Basebands that can be placed in one sideband or distributed between the 2 Sidebands.

A maximum available 8 GHz bandwidth is achieved when the 4 basebands are chosen not to overlap by the PI.

Archive data reflect the PI choices

Query Form Results Table

Submit download request

Sashin aswinoaa requ

Showing	28 of 28 rows.									M	ore columns	
	Project code	Source name	RA	Dec	Band	Integr	ration	Release dat	e 🔺 Velocity	resolution	Frequency support	
ilter:									m/s c			
	2011.0.00020.S	NGC 1614	04:34:00.03	-08:34:44.6	7	120.9	6	2013-01-12	2 834.09		344.15357.85GHz	-
	2011.0.00020.S	NGC 1614	04:34:00.03	-08:34:44.6	7	120.9	6	2013-01-1	2 851.55		336.17351.86GHz	<u> </u>
	2011.0.00768.S	NGC1614	04:34:00.03	-08:34:44.6	7	120.9	6	2013-10-1	5 846.76		337.97353.59GHz	-
	2011.0.00768.S	NGC1614	04:34:00.03	-08:34:44.6	7	120.9	6	2013-10-1	5 846.76		337.97353.59GHz	-
	2011.0.00768.S	NGC1614	04:34:00.03	-08:34:44.6	7	120.9	6	2013-10-1	5 846.76		337.97353.59GHz	-
	2011.0.00182.S	NGC 1614	04:34:00.03	-08:34:45.2	9	151.2		2013-12-2	1 13784.	20	675.82683.31GHz	-
	2011.0.00182.S	NGC 1614	04:34:00.03	-08:34:45.2	9	151.2		2013-12-2	1 13784.	20	675.82683.31GHz	
	2013.1.01172.S	ngc_1614	04:34:00.05	-08:34:59.0	6	151.2		2015-08-0	3 2625.6	0	214.12232.20GHz	-
	2013.1.01172.S	ngc_1614	04:34:00.05	-08:34:45.2	6	151					214.12232.20GHz	-
	2013.1.01172.S	ngc_1614	04:34:00.05	-08:34:31.5	6	151	Frequer	су	Resolution	Polarization	214.12232.20GHz	<u>:</u>
	2013.1.01172.S	ngc_1614	04:34:00.05	-08:34:45.2	3	30.2	98.621	00.62GHz	125000.00kHz	XX YY	98.68114.41GHz	
	2013.1.00991.S	NGC_1614	04:34:00.03	-08:34:44.6	3	60.4	100.44	102.44GHz	125000.00kHz	XX YY	98.62114.42GHz	
	2013.1.00991.S	NGC_1614	04:34:00.03	-08:34:44.6	3	60.	110.67	112.55GHz	3906.25kHz	XX YY	93.75109.42GHz	
	2013.1.00991.S	NGC_1614	04:34:00.03	-08:34:44.6	3	120	112.54	114.42GHz	3906.25kHz	XX YY	98.66114.48GHz	
	2013.1.00991.S	NGC 1614	04:34:00.03	-08:34:44.6	3	120			00001201012		98.66114.48GHz	

Results Bookmark Export Table Results Help

Continuum vs spectral line

Digital correlators can be set up to different bandwidth and spectral resolution.

Continuum can be observed with large bandwidth and low spectral resolution (broad frequency channels)

The narrower are the spectral lines the higher is the spectral resolution requested to sample it.

Hence data products are always 4D cubes: Ra, dec, frequency channels, polarization products

ALMA spectral properties: correlator

Each baseband may be divided in up to 4 spectral windows by allocating a fraction of the correlator resources (up to 3840 channels in double pol) to each window.

Typical	Mode	Polari- zation	Bandwidth per baseband (MHz)	Number of channels per baseband	Channel Spacing (MHz)	Velocity width at 300 GHz (km/s)
Pai 20000	7	Dual	1875	3840	0.488	0.48
Spectral scans	8	Dual	938	3840	0.244	0.24
- -	9	Dual	469	3840	0.122	0.12
Targeted imaging of	10	Dual	234	3840	0.061	0.06
moderately narrow	11	Dual	117	3840	0.0305	0.03
protoplanetary disks	12	Dual	58.6	3840	0.0153	0.015
	6	Single	58.6	7680	0.00763	0.008
"Continuum"	69	Dual	2000	128	15.625	15.6
or broad lines	71	Single	2000	256	7.8125	7.8

	Frec	uencv	division	mod	e:
--	------	-------	----------	-----	----

small bandwidth high resolution (spectral lines)

Time division mode:

large bandwidth low resolution (continuum)

The PI can request to bin the channels at the correlator stage (i.e. reduce the resolution in the data) to reduce the data rate

Large number of modes \rightarrow high flexibility for different science cases

ALMA sensitivity

The Science Goal: Sensitivity Calculator

http://almascience.eso.org/call-for-proposals/sensitivity-calculator

Common Parameter	s										
De	ec		00:00:00	000.							
Po	olarization		Dual						-		
O	bserving Frequ	345.0000	345.00000 GHz			-					
Ba	andwidth per I	0.00000			GHz			-			
w	Water Vapour (@ Column Density 0.		Autor	natic	Choice	e 🔾 Ma	nual	Cho	oice		
			0.913mm	(3rd (Octile)						
ta	au/Tsky		tau0=0.1	58, Ts	sky=39	.538					
Ts	sys		157.027 k	K							
Individual Paramete	ers										
	12m Array				7m Ar	ray			Total Powe	er Arra	y
Number of Antenna	s <u>34</u>				9				2		
Resolution	0.00000	arcsec		-	5.97	4554 ar	csec		17.923662	arcsec	;
Sensitivity(rms)	0.00000	Jy		-	0.000	00	Jy	•	0.00000	Jy	-
(equivalent to)	Infinity	к		-	0.000	00	к	-	0.00000	к	-
ntegration Time	0.00000	s		-	0.000	00	s	•	0.00000	s	-
			Integra	ation	Time	Unit Op	tion	Aut	omatic		-
	Calculate	Integration	Time		alcula	to Son	sitivit	v	1		

(See tutorial on Sensitivity Calculator)

ALMA organization

ALMA is a world wide collaboration

Contributors share the observing time an host a mirror of the archive

- Europe: **ESO** (14 countries) \rightarrow 30%
- North America: **NRAO** (USA, Canada) \rightarrow 30%
- East Asia: **NAOJ** (Japan, Taiwan) \rightarrow 20%
- → Chile → 10%

The ALMA Regional Centres (ARCs)

– F2F user support, Helpdesk

Enter the ALMA world through the ALMA Science Portal

http://almascience.eso.org/

Access the ALMA data https://almascience.eso.org/alma-data

	✓ C Atta cube spectroscopy	
an ARC 🝳 IRA mail 🗌 Arc	Arc-newsletter 【ALMAhelpdesk 🛱 jira 🛱 Science Operations Re 🚏 ARC TWiki 🚏 Image Archive: ALMA 💽 ALMA_tel ≤ ALMA WebShiftlo	og T 【
	cama Large Millimeter/submillimeter Array arch of our Cosmic Origins	
ESO	NRAO NAOJ Log in Register Reset Password Forgot Account	
About	You are here: Home > Data ALMA Data	
Science Proposing	The ALMA Archive The first ALMA Science data are now public. These data are accessible through the Science Portal without user registration.	
Observing Data	Data still within its proprietary period is only accessible to PIs as authenticated users. The data proprietary period is 12 months, starting at the time when data is delivered to the PI. A single project may be divided into more than one delivery and in these cases a unique 12 month proprietary period is defined for each delivered data set.	
Archive	Access is provided through the Archive link in the left side-bar.	
Calibrator Catalogue Science Verification Data Processing	The ALMA Archive is under development and will eventually provide access to all data obtained by the ALMA observatory. This includes: raw science data from the correlators, calibration data, processed and quality assured data, including image data cubes as well as logs and reports on project execution and quality assurance.	
Documents & Tools Knowledgebase/FAQ	The ALMA Calibrator Source Catalogue A web-based user interface to the calibrator database is provided through the Calibrator Catalogue link in the left side-bar.	
User Services at ARCs Helpdesk	The intention is to provide a more complex, public search tool for calibrator sources, which can also be accessed through the Observing Tool and included into the Scheduling Blocks. The principles of the calibrator selection during observation are described in the <u>ALMA Cycle 2</u> <u>Technical Handbook</u> , A.8 'Calibration source selection'	
 ALMA Calendars EU ARC NA ARC EA ARC 	The data comprise ALMA calibrator measurements of the flux density for sources drawn from seed catalogues such as ATCA, SMA and VLA, and use updated coordinates from VLBI. Stated flux density uncertainties do not in all cases fully account for uncertainties in the planetary models used for the primary amplitude calibration. Structure information, expressed as the acceptable uv range, is available for sources where relevant for past and current ranges of ALMA baseline. Polarization information will be added during Cycle 2. For further details on the Calibrator Source Catalogue, see Fomalont, E., et al., 2014, "The Calibration of ALMA using Radio Sources', <u>The Messenger, 155</u> , 19"	

Science Verification Data

) .

In addition to the archive, there are several datasets available as Science Verification data. These observations are performed in order to demonstrate the early capabilities of ALMA. Access to the data sets are through the link Science Verification in the left side-bar. Information about planned Science Verification observations are also presented. Publications making use of ALMA Science Verification data must include a statement in the acknowledgement that is similar to the one for regular data (see below). The Science Verification acknowledgement can be

Access the documents and tools https://almascience.eso.org/documents-and-tools

ocuments-and-tool:	s				~ ℓ	्र data cut	be spectroscopy
			udask 👻 jira 👻 Science Operations Re				
	Ataca In sear	ama Large Millimeter/su	ubmillimeter Array	ARCTWI		ALMA_tet	
	ALMA				Search	Site	Q
	ESO	NRAO NAOJ			Log in Register Reset P	assword Foi	rgot Account
	About Science Proposing Observing Data Documents & Tools Previous Cycles ALMA Science Pipeline Documentation Archive Knowledgebase/FAQ	You are here: Home > Document Summary of clocul Call for Proposals Documentation supporting • ALMA Proposer's Guid • ALMA Technical Handb • ALMA Users' Policies (• Early Science Primer (• ALMA Proposal Templa Observing Tool (OT) Documents and tools supp The ALMA Observing Tool	ents & Tools ments and tools available for A g the current ALMA Call for Proposals – Cyc de (Contains all pertinent information regard book (A comprehensive description of the A (The long-term core policies for use of the A (Introduction to interferometry and how to use late (LaTeX format. Recommended but not r porting the current ALMA Call for Proposals (OD) is a Java application used for the pre-	ALMA cle 3. ding the ALMA Ca ALMA observatory ALMA and ALMA (se ALMA during E mandatory) - Cycle 3.	ul for Proposals) r and its components) data by the science community.) farly Science)	rving proposa)) and Phase
	User Services at ARCs = Helpdesk = ALMA Calendars = EU ARC = NA ARC = EA ARC	 2 (telescope runfiles for ac Note that in order to submit ALMA Observing Tool OT Quickstart (A Quick OT User Manual (Desc OT Reference Manual Video Tutorials on how Known OT issues (for 1 A User's Guide to ALM the Observing Tool (O the queue, ready for o 	(OT) is a Java application used for the pre- ccepted proposals) materials. The current r it proposals you will have to register with the (takes you to the OT page on the Science k Start Guide for using the Observing Tool) cribes how to use the Observing Tool for pr I (An in-depth description of the Observing T (An in-depth description of the Observing T tool to use the Observing Tool those instances when OT problems are en <u>A Scheduling Blocks</u> is a guide to understa DT). In particular this guide may be used by observing.	paration and sub release of the OT e ALMA Science F Portal) reparing ALMA pro Tool) countered) anding the structu PIs when asked to	nission of ALMA Phase I (obse is configured for the Early Scier Portal beforehand. oposals) re and content of ALMA Schedu o verify and approve their SBs b	rving proposa nce Capabilitie lling Blocks (S efore they are	i) and Phase ≱s of ALMA. Bs) using ∋ placed in

The ALMA Regional Centers provide user support and host special activities related to their respective regions. Their functions are described in the 'Guide to'.

Access the FAQ - Knowledgebase https://help.almascience.org/index.php?/default/Knowledgebase/List

Knowledgebase - W × 🕈			
e.org/index.php?/default/Knowledgebase/List		✓ ♂ 🔍 data cube spect	troscopy \rightarrow 7
SP 📕 ALMA-OT 🗌 Italian ARC 🕥 IRA mail 🗌 Arc-newsletter	🖪 ALMAhelpdesk 🏾 🛱 jira 🚆 Science Operations Re 📲 ARC	TWiki 📲 Image Archive: ALMA 🔳 ALMA_tel 🔍 AL	MA WebShiftlog T 💽 ALMA Project Tra
Atacama Larg	e Millimeter/submillimeter Array nsmic Origins		
<< Science Portal	🕆 Dashboard 📋 Knowledgebase 🗿 News	English (U.S.)	-
Login	Rease type your search query here Advanced	Search Help]
» Knowledgebase	Knowledgebase	<u>a</u>	
Early Science - Cycle 2 (5)	Most Popular	Recent Articles	
Early Science - Cycle 3 (27) Resources & Observer Support (14)	 How do I model the ALMA primary beam, and how can I use that model to obtain the Under what conditions can I request time-constrained 	 What do I do if I get a fatal initialization error when using Web Start? What does QA0 "SemiPass" mean in Results Table of 	
Project Planning (19)	ACA observations of predict	ALMA Archive Query?	
Proposal Handling (7) Archive & Data Retrieval (15) Offline Data Reduction and/or CASA (29)	 How do I arrange a visit to one of the ARCs? What are the frequency reference frames in CASA? Can I reduce ALMA data in software packages other than CASA, and is there suppor Where can I find ALMA documentation and manuals? Will re-reduction improve the Cycle 0 data products provided by the archive? 	 How do I combine multiple executions obtained with a single antenna configuratio What does the "Observing Timed Out" state mean in the Project Tracker? What is the relationship between my proposal Grade and the reported percentile r How do I combine ALMA data from different cycles, manually and pipeline-calibrat What is the astrometric accuracy of ALMA? 	

Help Desk Software by Kayako Resolve

Access the Helpdesk https://help.almascience.org/index.php?/eu Register on the SP to access!!!

Link to ESO, NAOJ, or NRAO Accounts

A project lifetime: phase 1 Proposal submission

PI has a good idea!

PI estimates feasibility PI splits project in Science Goals	Simulations are not compulsory (Sensitivity Calculator, OST, CASA) Minimum proposed observational unit including targets
	in the same sky region that roughly share the same calibration and spectral setup
PI writes the science case in pdf and register to the Science Portal	Max 4 page, font no smaller than 12, all included (<20MB) www.almascience.org
PHASE I – Proposal submission	With the ALMA Observing Tool (OT) A copy of the project with the project ID must be saved and should be used for any resubmission within the deadline
TAC evaluation	 A=high ranked pass to Cycle 4 if not finished B=high ranked but not passed over C=maybe filler (depends on time shares and ranking)

Project ID (assigned at first submission):

YYYY.R.CCCCC.X

YYYY= submission year R= number of call for the submission year CCCCC= sequential number of submitted X= type of proposal

Early Science Cycles

Early Science observations are conducted on a best effort basis to allows community to observe with incomplete, but already superior array, with priority given to the completion of the full ALMA capabilities

Past & current ALMA Early Science cycles:

ALMA Cycle 4 (preannounced capabilities)

Proposal submission deadline 21 April 2016

Observing epoch	Oct 2016 - Oct 2017					
Hours dedicated to Science	2100					
Antennas	> 40x12m					
	+10x7m+3TP					
Receiver bands	3,4, 6,	7,	8, 9, 10			
Wavelengths [mm]	3, 2, 1.3,	0.8,	0.7, 0.45, 0.35			
Baselines	up to 12.8km,	5.3km,	2.7km			
Polarisation	full (with some limitations)					

News

- ACA standalone
- Large programs (>50hr of observations not splittable in smaller programs)
- mmVLBI (with some restrictions)
- Solar observations

Italian ALMA Proposal Preparation Day April 11-12 2016 Bologna, Osservatorio di Radioastronomia (ARC) Registrations open on alma.inaf.it

A project lifetime: phase 2 Observing process

PHASE II – Observing process	
Scheduling Block	Each SG is converted into a Scheduling Block, an observational unit including targets in the same sky region and their Calibrators to be observed with the same instrumental setup. They are the minimum set of instructions to perform an observation.
Observations	Projects are dynamically scheduled according to telescope configuration, weather, ranking, project status
Quality assessment	QA0 and 1 = telescope conditions
Data archival and delivery	1 yr of proprietary period before data are public

(See talk on Archive)