ALMA Science: a review of (sub)mm band science and instruments in the ALMA era

Marcella Massardi

INAF- Istituto di Radioastronomia Italian node of European ALMA Regional Centre

EUROPEAN ARC ALMA Regional Centre || Italian SISSA – February 2014

<u>Outline</u>

Observing in the sub(mm)

Issues in the sub(mm)

Resolution for a radiotelescope of diameter D at wavelength λ and k~1

$$\theta = k \lambda / D$$

Hence, resolution decreases as the wavelengths decreases. Larger telescopes are needed to reach higher resolutions:

from space small instruments give large areas but low resolution from ground larger instruments are possible.

Issues in the sub(mm)

Resolution for a radiotelescope of diameter D at wavelength λ and k~1

$$\theta = k \lambda / D$$

Hence, resolution decreases as the wavelengths decreases. Larger telescopes are needed to reach higher resolutions:

from space small instruments give large areas but low resolution from ground larger instruments are possible.

Lower wavelengths are more sensitive to smaller obstacles.

Atmospheric effects: scattering of signal, absorption Instrumental effects: surface accuracy must be higher at lower wavelengths

Issues in the sub(mm)

Resolution for a radiotelescope of diameter D at wavelength λ and k~1

$$\theta = k \lambda / D$$

Hence, resolution decreases as the wavelengths decreases. Larger telescopes are needed to reach higher resolutions:

from space small instruments give large areas but low resolution from ground larger instruments are possible.

Lower wavelengths are more sensitive to smaller obstacles.

Atmospheric effects: scattering of signal, absorption Instrumental effects: surface accuracy must be higher at lower wavelengths

The rms noise in the signal (sensitivity):

Tsys is the brightness temperature equivalent to the flux received from the antenna, including source, atmosphere, instrumental noise.

Sensitivity can be improved by

- getting lower Tsys (= lowering the instrumental noise

choosing sites with low water vapour levels)

- increasing the collecting area
- increasing the bandwidth and/or the integration time

Receiving system: ATMOSPHERE + ANTENNA + RECEIVER + BACKEND

by resolution stacles. lower wavelengths $\Delta S_{\nu} = 2 k \frac{T_{\rm sys}}{A_{\rm c} \sqrt{2t \, \Lambda u}}$

Instruments: selecting the site

Instruments: bolometers

An incident radiation changes the temperature of the receiver that absorb it.

The temperature variation is a measure of radiation intensity.

Bolometers are intrinsically broadband because the thermal effect is independent of frequency. They are less sensitive to atmospheric variations.

Filters are needed for frequency determination.

They are usually mounted on single dish, hence limited in resolution to the antenna diameter. To cover larger areas they are packed in arrays to increase the instantaneous Field Of View.

Instrument	Wavelength (microns)	F-o-V (sq-arcmins)	NEFD (mly)	FWHM (arcsec)	Confusion (mly)
SCUBA	450	4.2	400	7.5	0.25
	850	4.5	80	14	0.5
SCUBA-2	450	50	100	7.5	0.25
	850	50	30	14	0.5
Laboca-S	350	4	250	7	0.3
Laboca	850	11	110	18	0.8
SPIRE	250	32	29	18	2.6
	350	32	34	25	3.8
	500	32	37	35	5.4
AzTec	1100	2.4	3.5	5.5	0.06
MAMBO-2	1200	10	30	10	0.2

100 pc at z>1 appear on arcsec scales

Instruments: Coerent receivers

Coherent receivers preserve the phase of the signal: can be mounted on interferometers

Furthermore, by mean of heterodyne principles the frequency is shifted to fixed lower values, without changing any other property of the signal, by combining the received signal with that of a tunable **Local Obscillator**.

This allows to have the whole electronic chain working at the same frequency.

me frequenc	:У.				
	IF RF =	LO1 ± IF	LSB	USB	
	RF = Rest Frame	LSB	= Lower Sideband	Lo1 (USB = Upper Sideband	
Name	Antennas	Δλ	Max ang. resol.	Total area	
	$[\# \times \text{Diameter}]$	[mm]	[asec]	$[m^2]$	
IRAM-PdBI	$6 imes15\mathrm{m}$	1.2 - 3	0.35	1060	
$CARMA^{a}$	$6 \times 10.4\mathrm{m} + 10 \times 6\mathrm{m}$	1.2 - 3	0.1	792	
NMA	$6 imes 10 { m m}$	1.2 - 3	1	471	
SMA	$8 imes 6 { m m}$	0.35 - 1.2	0.1	226	
$eSMA^{b}$	$\rm SMA+15m+10.4m$	0.87 - 1.2	0.2	488	
ATCA ^c	6×22 m d	3 - 12	2.	2280^{d}	

receiver band (f xed)

Notes:

 a CARMA is the merging of the former OVRO (6×10.4 m antennas) and BIMA (10×6 m antennas) arrays.

b eSMA is the combination of SMA with the JCMT and CSO.

^c ATCA can observe at much lower frequencies, down to $\lambda = 20$ cm, the specifications given here only refer to the observing capabilities at mm wavelengths.

 d At $\lambda=3\mathrm{mm}$ only 5 of the ATCA antennas can be used, for a total collecting area of 1900 $\mathrm{m}^2.$

Instruments: interferometers

Coherent receivers preserve the phase of the signal: can be mounted on interferometers

Furthermore, by mean of heterodyne principles the frequency is shifted to fixed lower values, without changing any other property of the signal, by combining the received signal with that of a tunable **Local Obscillator**.

This allows to have the whole electronic chain working at the same frequency.

baseline B

A coherent combination of reflectors of diameter d at distance B(>>d) give a resolution equivalent to that of a single reflector of diameter B. The main (primary) beam (FOV) of an antenna is the solid angle where its power pattern (assuming to use it as a transmitter) is larger ($\theta = \lambda/d$). This correspond to the range where it is more sensitive as a receiver. The power pattern in case of a far away point source is given by the main beam shape with amplitude equal to the source flux (total power).

Instruments: interferometers

Coherent receivers preserve the phase of the signal: can be mounted on interferometers

Furthermore, by mean of heterodyne principles the frequency is shifted to fixed lower values, without changing any other property of the signal, by combining the received signal with that of a tunable **Local Obscillator**.

This allows to have the whole electronic chain working at the same frequency.

A coherent combination of reflectors of diameter d at distance B(>>d) give a resolution equivalent to that of a single reflector of diameter B. The main (primary) beam (FOV) of an antenna is the solid angle where its power pattern (assuming to use it as a transmitter) is larger ($\theta = \lambda/d$). This correspond to the range where it is more sensitive as a receiver. The power pattern in case of a far away point source is given by the main beam shape with amplitude equal to the source flux (total power).

After correcting for geometrical delays, allowing the comparison of two points of the same wavefront coming from a far away point source the output of the correlation of two signals is a fringes pattern centered around 0 (total power is lost).

Only the spatial component corresponding to $\theta = \lambda/B$ is preserved.

Baselines equal to 2D identifies angular scales of the order of $\theta/2$. The interferometer works as a filter in spatial scales. Signals on multiple baselines can be combined to retrieve information on source structure (= aperture synthesis).

The visibility function

The incoming wave induces a electromagnetic $U_2 \propto E \,\mathrm{e}^{\,\mathrm{i}\,\omega\,(t-\tau)}$ $U_1 \propto E \,\mathrm{e}^{\,\mathrm{i}\,\omega t}$ voltage in the antennas (E is the wave amplitude) $\tau = \frac{1}{c} \boldsymbol{B} \cdot \boldsymbol{s}$ The geometrical delay in the direction s=s0+ds $R(\tau) \propto \frac{E^2}{T} \int^T e^{i\omega t} e^{-i\omega(t-\tau)} dt$ The correlator works as a multiplier and time integrator with output $R(\tau) \propto \frac{\omega}{2\pi} E^2 \int^{2\pi/\omega} \mathrm{e}^{\mathrm{i}\,\omega\tau} \,\mathrm{d}t$ If t>> $2\pi/\omega$ that results in $B \cdot s$ $R(\tau) \propto \frac{1}{2} E^2 \,\mathrm{e}^{\,\mathrm{i}\,\omega\tau}$ В The power induced by the source $dP = I_{\nu} \cos\theta \, d\Omega \, d\sigma \, d\nu$ in terms of I and effective area $= A(s) I_{\nu}(s) \,\mathrm{d}\Omega \,\mathrm{d}\nu$ from in the direction s ($P \propto E^2$) $r_{12} = A(\boldsymbol{s}) I_{\nu}(\boldsymbol{s}) e^{\mathrm{i}\,\omega\tau} \mathrm{d}\Omega \mathrm{d}\nu$ The output of the correlator integrated over the source is the visibility function $R(\boldsymbol{B}) = \iint A(\boldsymbol{s}) I_{\nu}(\boldsymbol{s}) \exp \left[i 2\pi\nu \left(\frac{1}{c} \boldsymbol{B} \cdot \boldsymbol{s} \right) \right] d\Omega d\nu$ 0. _____

The visibility function: properties

Some visibility function properties:

$$R(\boldsymbol{B}) = \iint_{\Omega} A(\boldsymbol{s}) I_{\nu}(\boldsymbol{s}) \exp\left[i 2\pi\nu \left(\frac{1}{c} \boldsymbol{B} \cdot \boldsymbol{s}\right)\right] d\Omega d\nu$$

- Amplitude is modulated by the main beam shape
- The phase is strictly connected with the source position
- Angular scales on the sky are associated with the size of the projected baseline needed to observe them and the FWHM of the response function width is the synthesized beam λ/B.
 We can observe more angular scales either changing the baseline

 $B \cdot s$ or averaging the signal from N Antenna couples (N(N-1)/2)

The visibility function: properties

Some visibility function properties:

s0

$$R(\boldsymbol{B}) = \iint_{\Omega} A(\boldsymbol{s}) I_{\nu}(\boldsymbol{s}) \exp\left[i 2\pi\nu \left(\frac{1}{c} \boldsymbol{B} \cdot \boldsymbol{s}\right)\right] d\Omega d\nu$$

- Amplitude is modulated by the main beam shape

u

- The phase is strictly connected with the source position
- Angular scales on the sky are associated with the size of the projected baseline needed to observe them and the FWHM of the response function width is the synthesized beam λ/B. We can observe more angular scales either changing the baseline or summing the signal from N Antenna couples (N(N-1)/2)
 - or changing the angle towards the target (exploiting the Earth rotation) to obtain a different projection of the same baseline.

The projected baseline is described over the uv plane perpendicular to the direction to the phase center (s0) with u and v towards E and N. The earth rotation generates elliptical loci on the uv plane in 12 hr which ellipticity depends on the telescope latitude and source declination.

The visibility function: the uv plane

The visibility function: the uv plane

The visibility function: properties

Some visibility function properties:

s0

$$R(\boldsymbol{B}) = \iint_{\Omega} A(\boldsymbol{s}) I_{\nu}(\boldsymbol{s}) \exp\left[i 2\pi\nu \left(\frac{1}{c} \boldsymbol{B} \cdot \boldsymbol{s}\right)\right] d\Omega d\nu$$

- Amplitude is modulated by the main beam shape

u

- The phase is strictly connected with the source position
- Angular scales on the sky are associated with the size of the projected baseline needed to observe them and the FWHM of the response function width is the synthesized beam λ/B. We can observe more angular scales either changing the baseline or summing the signal from N Antenna couples (N(N-1)/2)
 - or changing the angle towards the target (exploiting the Earth rotation) to obtain a different projection of the same baseline.

The projected baseline is described over the uv plane perpendicular to the direction to the phase center (s0) with u and v towards E and N. The earth rotation generates elliptical loci on the uv plane in 12 hr which ellipticity depends on the telescope latitude and source declination.

- Van Cittert- Zernike theorem: the visibility pattern is the Fourier transform of the brightness pattern

Hence the inverse transformation of the uv plane gives the image of the real plane (filtered for the observed angular scales).

From the sky to the image

<i>I</i> (<i>l</i> , <i>m</i>)	(a)	B(l,m) Telescope response to a δ Dirac source in s0	(b)	$I(l,m)^*B(l,m)$	(c)
			66		
	Convo	olution	-		
Map Fourier Real sky		Beam		(Almost) Final image Dirty Map	
Transform $V(u,v)$	(d)	Transform $S(u,v)$	(e)	Transform V(u,v)S(u,v)	(f)
	Multip	olication			
Visibility Fourier domai	n	Baseline projection Sampling Funct	ons ion	What we observe Sampled Visibility	ý

Deconvolution

$$R(\boldsymbol{B}) = \iint_{\Omega} A(\boldsymbol{s}) I_{\nu}(\boldsymbol{s}) \exp\left[i 2\pi\nu \left(\frac{1}{c} \boldsymbol{B} \cdot \boldsymbol{s}\right)\right] d\Omega d\nu$$

Aims to find a sensible model of I(s) compatible with data without sidelobes
Uses non-linear techniques to interpolate/extrapolate samples of R(u,v) into unsampled regions of the (u,v) plane
Requires knowledge of beam shape A(s) and a priori assumptions about I(s)

One of the most common algorithms in radio astronomy is the algorithm CLEAN (Hogborn 1974)

The Atacama Large Millimeter Array

ALMA rationale

- The Atacama Large Millimeter Array is a **mm-submm reconfigurable interferometer**
- · Inaugurated March 2013 on the Chajinantor plain (5000m, Chile)
- The design of ALMA is driven by three key science goals:

- The ability to detect spectral line emission from CO or [CII] in a normal galaxy like the Milky Way at a redshift of z=3, in less than 24 hours,

- The ability to image the gas kinematics in protostars and in protoplanetary disks around young Sun-like stars in the nearest molecular clouds (150 pc),

- The ability to provide precise high dynamic range (=|image max/image min|) images at an angular resolution of 0.1 arcsec.

- -> frequency bands, high sensitivity
- -> study of star formation in galaxies up to high redshift, galaxy formation, Lensing, ...
- -> high and low angular resolution, high spectral resolution
- -> study of processes of star and planet formation, stellar evolution and structure, astrochemistry, ...
- -> high angular resolution and sensitivity
- -> galaxy dynamics, AGN core mechanisms, imaging of exoplanets, comets, asteroids, ...

ALMA organization

World wide collaboration

- Europe: ESO (14 countries)
- North America: NRAO (USA, Canada)
- East Asia: NAOJ (Japan, Taiwan)
- > Chile

Contributors share the observing time

3 Sites in Chile

- > AOS: ALMA Operations Site (5000m): Antennas, Correlator
- OSF: Operations Support Facility (3000m):
 Labs, Antenna Assembly & Maintenance Operators, Astronomers
- SCO: Santiago Central Office:
 - Call for Proposals
 - Running ALMA
 - Data Reduction Pipeline
 - Quality Assessment

ALMA sites

ALMA data flow

The ALMA Regional Centres (ARCs)

- Interface between JAO and users
- 1 ARC per Partner:
 - NRAO for North America
 - NAOJ for East Asia
 - ESO for Europe (split in 7 nodes)
- Operation support
 - Archive replication
 - Astronomer on duty
 - Software tools
- User support
 - Community formation and outreach
 - Phase 1 (proposal preparation)
 - Phase 2 (scheduling block preparation)
 - Data analysis, Archive mining
 - F2F user support, Helpdesk

Enter the ALMA world through the ALMA Science Portal

http://almascience.eso.org/

Access to Helpdesk for any request (FAQ, problems, F2F...)

Antennas : **50x12m** main array + (**12x7m + 4x12m TP**) ACA Baselines : **15m ->150m-16km** + **9m->50m**

Accame Compact Array

Area

Brit four 12-meter dishes and twelve 7-meter dishes

Further array of the second seco

Few hr 2 config OVRO

900GHz_50pc_ws_8 at 896.000 GHz in XX 2012 Jun 21

ALMA reconfiguration

ALMA reconfiguration

Main array for compact objects

Model Extended 10^h00^m00^s.2 00^s.0 09^h59^m59^s.9 00^s.0 09^h59^m59^s.9 10^h00^m00^s.2 Compact Compact 12m+ACA -30° 10^h00^m00^s.2 00^s.0 09^h59^m59^s.9 00^s.0 09^h59^m59^s.9 10^h00^m00^s.2

ACA for extended objects

Make your ALMA simulations (Observation Support Tool)

http://almaost.jb.man.ac.uk/

ALMA EUROPE	AN ARC Legional Centre UK	E CO CALM	A Observation Suppo	Su ca Re	ubmit a request for a full simulation of ALMA pabilities for your target acceive the results via e-mai
Array	Instrument	ALMA	Queue Status • Hel	p	
Sky Setup	Source model	OST Library: Central point source	Choose a library source model or	EUROPEAN ARG	Store Share
	Upload a FITS file	Browse	You may upload your own model I	ALMA ALMA Regional	Centre UK ALMA Observation Support Tool
	Declination	-35d00m00.0s	Ensure correct formatting of this s		Job ID: 20110330175645 / Submitted by: casasola@ira.inaf.it
	Image peak / point flux in mly 1	0.0	Set to 0.0 for no rescaling of source		Overview
	inage peak / point nux in injy 🗸	0.0	Set to 0.0 for no rescaling of source		Click thumbnails to view full-size images. Left: line ar colour scale, right: with histogram equalization.
				Array configuration	Early Science ALMA (Compact Cycle 0, 125 m baseline)
Observation Setup	Central frequency in GHz	90	The value entered must be within	Source model	All we ever see of stars are their old photographs
	Bandwidth in MHZ	32	Use broad for continuum, narrow		
	Bandwidth in HHZ	1.0	OST will choose config if instrume		
	Pointing strategy	Single \$	Selecting single will apply primary		
	Start hour angle	0.0	Deviation of start of observation fi	Maximum elevation	77.88 decrees
				Central frequency	90 GHz = Band 3
	On-source time in hours	3	Maximum duration is 24 hours	Bandwidth	0.032 GHz
	Number of visite	1	Here exercitizes the choose stime i	Track length	3 hours x 1.0 visits
	Number of Visits	L	now many times the observation i	System temperature	Tsys = Trec + Tsky = 37.0 + 4.42 = 44.15 K
	Number of polarizations	2 3	This affects the noise in the final n	PWV	0.5 mm
				Theoretical RMS noise	0.000103323597098 Jy (in naturally-weighted map)
				Restoring beam (resolution)	Major axis = 6.229 arcsec, minor axis = 5.176 arcsec, PA = 55.607 deg
Corruption	Atmospheric conditions	Good (PWV = 0.5 mm)	Determines level of noise due to v		Data products
Imaging	Imaging weights	Natural 🗘	This allows a resolution / sensitivit		
	Perform deconvolution?	No (Return dirty image)	Apply the CLEAN algorithm to deco	Your simulated image Download FITS file	

Make your ALMA simulations (CASA simalma, simobserve, and simanalyze)

The task **simobserve** generates a data set with simulated visibilities based on an input model image.

The task **simanalyze** produces a cleaned image based on the simulated visibilities, and it generates some diagnostic images.

CASA also provides the task **simalma** that simplifies the steps needed to simulate ALMA observations that combine data from multiple arrays or multiple configurations.

ALMA bands

		Full Sci	енсе Сарав	ilities		Most C	ompact	Most Ex	tended	
	Band	Frequency (GHz)	Wavelength (nun)	Primary Beam (FOV; ")	Continuum Sensitivity (mJy/ beam)	Angular Resolu- tion (‴)	Spectral Sensitivity ATime (K)	Angular Resolution (~)	Spectral Sensitivity ∆T _{line} (K)	
	1	31.3-45	6.7-9.5	197-137	0.04	13-9	0.006	0.12-0.08	255	
	2	67-90	3.3-4.5	92-69	0.06	6-4.4	0.009	0.06-0.04	413	
	3	84-116	2.6-3.6	73-53	0.07	4.8-3.4	0.04	0.045-0.032	430	
	4	125-163	1.8-2.4	49-38	0.06	3.2-2.4	0.048	0.030-0.023	330	
	5	163-211	1.4-1.8	38-29	0.11	2.5-1.9	0.06	0.027-0.021	641	
	6	211-275	1.1-1.4	29-22	0.085	1.9-1.5	0.05	0.018-0.014	490	
	7	2 75-3 73	0.8-1.1	22-16	0.15	1.5-1.1	0.08	0.014-0.01	814	
	8	385-500	0.6-0.8	16-12	0.28	1.04-0.8	0.28	0.01-0.008	1900	
	9	602-720	0.4-0.5	10-8.6	1.1	0.66-0.55	0.9	0.006-0.005	<i>\$900</i>	
	10	787-950	0.3-0.4	7.8-6.5	1.2	0.51-0.42	1.6	0.005-0.004	_	
10	23	4 5 6	7	8		9		10		
0.8 - 0.6 - 0.6 -										
0.2									\mathcal{M}	
0.00		200		400 Frequ	Jency / GHz	600		800	1	

ALMA resolution

- Baselines length: 15m ->150m-16km + 9m->50m
- Resolution: 0.2" x (300/freq_GHz)x(1km/max_baseline)
- FOV 12m array: **17**"/(300/freq_GHz)
- FOV 7m array: 29"/(300/freq_GHz)

Up to 16km baselines, subarcsec resolution 40 mas @ 100 GHz, 5 mas @ 900 GHz

 $\theta = k \lambda / D$

Mosaicking

Largest angular scales than that available to the shortest baseline cannot be observed.

Details in the ranges available to the given baselines can be observed on larger region of the sky by mosaicking the region.

)

3

mm-VLBI with ALMA

Higher and higher resolutions can be obtained with longer baselines. VLBI is a worldwide network of telescopes that matches simultaneous observations in different sites, exploiting the phase information to construct a world-wide interferometer.

At 1 mm and a baseline of 9000 km offers resolution of about 20 microarcseconds

ALMA will be operating in the mm-VLBI since 2017 adding a strength in sensitivity. **Only sources with** flux densities >100 mJy have been observable so far; ALMA will reduce it by more than an order of magnitude.

This capability will allow the shadow of the event horizon in the black hole at the Galactic Centre , the relativistic jet flows in AGN and the dusty winds near stellar surfaces to be imaged

M87 models of different basis of the jet as observed by ALMA+CARMA+SMA+ SMT and by adding also PdBI

u (Gλ)

ALMA sensitivity

Dry site, low pwv, low Tsys, high sensitivity also at submm frequencies

>6500sqm of effective area and 1225 baselines for the 12m array + Short spacings with ACA Excellent instantaneous uv coverage & high sensitivity <0.05mJy @100 GHz in 1 hr</p>

$$\Delta S_{\nu} = 2 k \frac{T_{\rm sys}}{A_{\rm e} \sqrt{2t \, \Delta \nu}}$$

Receivers are couple of dipoles, so split the signal into 2 polarizations By combining the indipendent polarizations chains it can reconstruct all the Stokes parameters

The Science Goal: Sensitivity Calculator

http://almascience.eso.org/call-for-proposals/sensitivity-calculator

Common Paramet	ers										
	Dec		00:00:00.000								
	Polarization		Dual						-		
	Observing Free	quency	345.00000			GHz			-		
	Bandwidth per	Polarization	0.00000		GHz 🗖			-			
	Water Vapour		Automa	tic	Choice	e 🔾 Mai	nual	Cho	ice		
	Column Dens	olumn Density I/Tsky			Octile)						
·	tau/Tsky				sky=39	.538					
	Tsys		157.027 K								
Individual Parame	ters										
	12m Array				7m Ai	ray			Total Pow	er Arra	y
umber of Antenn	as <u>34</u>				9				2		
lesolution	0.00000	arcsec		-	5.97	4554 ar	csec		17.923662	arcsec	:
Sensitivity(rms)	0.00000	Jy		-	0.000	00	Jy	-	0.00000	Jy	-
(equivalent to)	Infinity	к		-	0.000	00	к	-	0.00000	к	-
ntegration Time	0.00000	s		-	0.000	00	s	•	0.00000	s	-
			Integrat	ion	Time	Unit Opt	tion	Aut	omatic		-
				_					1		
	Calculate	Integration	Time	0	Calcula	ate Sens	sitivit	y			

ALMA spectral properties

The coherent receivers map two freq regions to an Intermediate Frequency by mixing the signal with a Local Oscillator.

The receivers allows up to 4 x 2 GHz-wide Basebands that can be placed in one sideband or distributed between the 2 Sidebands.

A maximum available 8 GHz bandwidth is achieved when the 4 basebands are chosen not to overlap.

ALMA spectral properties

210,00 22 1 - FDM FDM	2		20100 LO1	FD	3 M TI	230100 4 DM	Each baseband may be into one or more spect windows by allocating of the correlator resou each window.	e divided tral a fraction trces to
Resolution	Mada	Re	Pondwidth	Number of	Channel	Volocity		
Typical	wode	zation	bandwidth per baseband (MHz)	channels per baseband	Spacing (MHz)	width at 300 GHz (km/s)		
pui poses.	7	Dual	1875	3840	0.488	0.48		
Spectral scans	8	Dual	938	3840	0.244	0.24		
Г Г	9	Dual	469	3840	0.122	0.12	Frequency division mo	ode: small bandwidth High resolution
Targeted imaging of	10	Dual	234	3840	0.061	0.06		(spectral lines)
moderately narrow	11	Dual	117	3840	0.0305	0.03	Time division mode:	large bandwidth
protoplanetary disks	12	Dual	58.6	3840	0.0153	0.015	Time division mode.	low resolution
	6	Single	58.6	7680	0.00763	0.008		(continuum)
"Continuum"	69	Dual	2000	128	15.625	15.6		
or broad lines	71	Single	2000	256	7.8125	7.8		

Found 22 lines from 84 - 750 GHz, showing 1 - 22

Click on the chemical formula below for more information about that species.

	Species	Chemical Name	Ordered Freq (GHz) (rest frame, <mark>redshifted</mark>)	Resolved QNs	CDMS/JPL Intensity	Lovas/AST Intensity	E _L (cm ⁻¹)	E _L (K)	Linelist
1	HCO ⁺ v=0	Formylium	89.18853, 89.18853	1-0	0.00000	10.8	0.0000	0.0000	SLAIM
2	HNC v=0	Hydrogen Isocyanide	90.66356, 90.66356	J= 1 - 0	0.00000	1.6	0.0000	0.0000	SLAIM
3	<u>CO v = 0</u>	Carbon Monoxide	115.27120, 115.27120	1-0	0.00000	60.0	0.0000	0.0000	SLAIM
4	<u>HCO⁺ v=0</u>	Formylium	178.37507, 178.37507	2 - 1	0.00000		2.9750	4.2803	SLAIM
5	HNC v=0	Hydrogen Isocyanide	181.32473, 181.32473	J= 2 - 1	0.00000		3.0240	4.3508	SLAIM
6	CO v = 0	Carbon Monoxide	230.53800, 230.53800	2-1	0.00000	70.	3.8450	5.5321	SLAIM
7	<u>HCO⁺ v=0</u>	Formylium	267.55763, 267.55763	3 - 2	0.00000	12.	8.9250	12.8410	SLAIM
8	HNC v=0	Hydrogen Isocyanide	271.98111, 271.98111	J= 3 - 2	0.00000	10.	9.0730	13.0539	SLAIM
9	<u>CO v = 0</u>	Carbon Monoxide	345.79599, 345.79599	3-2	0.00000	70.00	11.5350	16.5962	SLAIM
10	<u>HCO⁺ v=0</u>	Formylium	356.73424, 356.73424	4 - 3	0.00000	17.40	17.8500	25.6820	SLAIM
11	HNC v=0	Hydrogen Isocyanide	362.63030, 362.63030	J= 4 - 3	0.00000	3.0	18.1450	26.1065	SLAIM
12	HCO ⁺ v=0	Formylium	445.90291, 445.90291	5 - 4	0.00000		29.7490	42.8019	SLAIM
13	HNC v=0	Hydrogen Isocyanide	453.26991, 453.26991	J= 5 - 4	0.00000		30.2410	43.5098	SLAIM
14	CO v = 0	Carbon Monoxide	461.04077, 461.04077	4-3	0.00000	60.	23.0690	33.1910	SLAIM
15	HCO ⁺ v=0	Formylium	535.06164, 535.06164	6-5	0.00000		44.6230	64.2022	SLAIM
16	HNC v=0	Hydrogen Isocyanide	543.89755, 543.89755	J= 6 - 5	0.00000		45.3600	65.2625	SLAIM
17	<u>CO v = 0</u>	Carbon Monoxide	576.26793, 576.26793	5-4	0.00000		38.4480	55.3178	SLAIM
18	HCO ⁺ v=0	Formylium	624.20846, 624.20846	7-6	0.00000	14.3	62.4710	89.8813	SLAIM
19	HNC v=0	Hydrogen Isocyanide	634.51082, 634.51082	J= 7 - 6	0.00000	14.8	63.5030	91.3661	SLAIM
20	<u>CO v = 0</u>	Carbon Monoxide	691.47308, 691.47308	6-5	0.00000	100.	57.6700	82.9738	SLAIM
21	HCO ⁺ v=0	Formylium	713.34137, 713.34137	8 - 7	0.00000	24.7	83.2920	119.8379	SLAIM
22	HNC v=0	Hydrogen Isocyanide	725.10732, 725.10732	J= 8 - 7	0.00000		84.6680	121.8177	SLAIM

ALMA status

ALMA Current status:

All the antennas have completed Assembly, Integration and Verification at the OSF at 3,000m and almost all have been transported to the AOS at 5,000m

ALMA Early Science:

allows community to observe with incomplete, but already superior array, on best effort basis:

- Cycle 0: Sep. 2011 Jan. 2013
- Cycle 1: Jan. 2013 May. 2014
- Cycle 2 call for proposals: 24 October 2013, Deadline: 5 December 2013

	Cycle 0	Cycle 1	Cycle 2
	Sep. 2011 - Jan. 2013	Jan. 2013 - May. 2014	Jun. 2014 - Oct.2015
Telescope			
Hours dedicated to Science	800	800	2000 (incl. some Cycle 1)
Antennas	> 12x12-m no ACA	> 32x12-m+9x7m+2TP	> 34x12-m+9x7m+2TP
Receiver bands	3, 6, 7, 9	3, 6, 7, 9	+4, 8
Wavelengths [mm]	3, 1.3, 0.8, 0.45	3, 1.3, 0.8 0.45	+2, 0.7
Baselines	up to 400 m	up to 1000 m	up to 1500
Polarisation	single-dual	single dual	+full (with limitations)

Cycle 0:

- 111 Highest-priority + 51 filler proposals (out of 919 submissions)
- 108 (98%) Highest-priority PIs received some data

<u>A proposal checklist</u>

Have a good idea!

Estimate required configuration Write the proposal idea in pdf docs	(CASA, Splatalogue, OST, OT) (max 5 page)
Register to the Science Portal	(SP)
PHASE I – Proposal submission TAC evaluation PHASE II – Observing program	(OT, SP, Helpdesk)
submission for accepted proposals	(OT, SP, Helpdesk)

Observations Data reduction and analysis

(CASA)

Phase II and ALMA observarions

Investigators will be notified of the result of the ALMA Proposal Review process via email and successful investigators will be invited to submit a detailed observing plan. **The ALMA Observing Tool (OT) is used to prepare individual Scheduling Blocks**

Dynamic schedule: the best SBs at any moment will be observed (science, weather, project...)

These will be used by the ALMA Scheduling Software to ensure that the observations are carried out under the required weather conditions.

The ALMA Regional Centers (ARC) will provide support to investigators in the Phase II process.

Once the Phase II preparation is finished the Scheduling Blocks will be submitted to the ALMA site and scheduled according to rank and requested observing conditions. Investigators will be able to track the status of their project with the **ALMA Project Tracker**.

Once observations are completed and pass the quality controls the Principal Investigator receives a link to his/her data including a minimal data reduction.

The CASA (Common Astronomy Software Applications) is the standard tool for ALMA data reduction.

The ALMA Observing Tool

About ALMA ALMA Science Call for Proposals Capabilities Road Map Proposers Guide Technical Guide Observing Tool Webstart Download Page Tarball Download Page OT Video Tutorials Troubleshooting Sensitivity Calculato Notice of Intent ALMA Data

Home

Home • Call for Proposals • Observing Tool Observing Tool

The ALMA Observing Tool (OT) is a Java application used for the preparation and submission of ALMA Phase I (observing proposal) and Phase II (telescope runfiles for accepted proposals) materials. The current Cycle 0 release of the OT is configured for the Early Science Capabilities of ALMA as described in the Cycle 0 Call For Proposals. Note that in order to submit proposals you will have to register with the ALMA Science Portal beforehand.

Webstart Download Page

Download & Installation
The OT will run on most common operating systems, as long as you | First Time Users: When you use the ALMA OT Webstart for the first time, it will download a large amount of shared resources (on the order of 130 MB)
problems). The ALMA OT is available in two flavours: WebStart and tar to your host, taking a few minutes to do so. This will only happen the first time, or when a revised version of the OT is released. Subsequent use of the
The WebStart application has the advantage that the OT is available in the flavours: WebStart and tar to your host, taking a few minutes to do so. This will only happen the first time, or when a revised version of the OT is released. Subsequent use of the
The WebStart application has the advantage that the OT is automatic.

The **WebStart** application has the advantage that the OT is automation of the OT is automation of the OT is automation. Note that the WebStart does not work with the Op Linux installations. If this is the case, the tarball installation of the OT shows a structure of the OT shows a

The **tarball** must be installed manually, however it has the advantaversions of Java 6. For Linux users we also provide a download of the Please use this if you have any problems running the OT tarball install

Click the OT Logo to bring up a download window, which should give you the option saving the OT to your Desktop if you will be using it regularly.

Documents & Tools Documentation

Extensive documentation is available to help you work with the OT and optimally prepare your proposal:

OT is a java-based client program,

runs on Linux (various distr.), MacOS (10.5-10.6), Windows (>XP).

The graphic interface allows one to get help/feedback and hints even with small knowledge of the system.

Proposals with the ALMA Observing Tool

0 My new idea - Observing Tool for ALM	1A (Early Science), version R8.	0.1							
<u>File Edit View T</u> ool <u>S</u> earch <u>H</u> elp								Persp	ective 1
	* * 5 5 6 7								
		Editore							
Proposal Program		Spectral Spatial Proposal	Catalog	Tab me	nu for vi	ewer			
My new idea		Proposal Information							
My new idea	al panel			Museulidee				?	=
🕈 🗂 Planned Observing			Proposal Title	My new Idea					
🖓 🖉 Science Goal ()			Proposal Cycle	9999.4					
- 🗋 Description									
- 🗋 Field Setup		Editore E	Danol						
Calibration Setup I	Parameters		anei						
 Spectral Setup 			Abstract						
Control and Perfor	rmance Parameters		(max. 300 words)						
Template library. Turn the keys on the	JTree below & read the								
Proposal Pemplate	e nanel								-
Planned Observing					7				
🗠 🍘 Science Goal (Band 3	3 100 GHz (rest frame) d	Feedback							
🔶 🤐 Science Goal (Band 3	3 Nyquist-sampled mosa	Problems Information Log							
 Science Goal (Band 6 	6 Mixed 219 GHz SSB Co								
Science Goal (Band 6	5 13CO J=2-1 mapping d	De	escription			Sugg	lestion		
Science Goal (Band o	700 GHz search for nat		Toodbac	k Danol					
	> TOO GI 12 Search for Dat		eeubac	k Pallel					
≜⊼ Duaniou		, 							0000000000
Drojoot Ovorvi	2144		_						
Project Overvie	ew	Contextual Help		Phase	I: Science Proposal				
Panel	1. Please ensure you and	your co-Is are registered with the A	LMA Nev			Submit			
	user portal		Scie	ence Scienc	se Science	Science			
	2. Create a new proposal	by either:	PIU						
	 Selecting File > Ne 	w Proposal	Click	on the overview steps	to view the contextua	al help			
	Clicking on the	con in the toolbar					٦		
	• Or clicking on this	<u>ink</u>	. Imp	orting Templ	ate Need / More	View Phase 2			
	 Click on the proposition of the propos	ai tree node and complete the releva	Exp	orting	Help?	Steps	1		
	neids.						J		

(see Viviana & Rosita's talks)

Tips to write a proposal

The proposal review process

Proposals will be reviewed by an international peer review committee.

The peer review by committee is a group of hopefully well informed peers examines your proposal, ranks it against other proposals, and then allocates resources to the highest ranked proposals.

There will at least one Review Panel for each of the **main themes**:

Cosmology and the High Redshift Universe

Galaxies and Galactic Nuclei

ISM, Star Formation/protoplanetary Disks and their Astrochemistry, Exoplanets

Stellar Evolution, the Sun and the Solar System

The ranked proposals from the different panels and sub-panels will be merged into a single ranked list in the ALMA Proposal Review Committee (APRC) and assigned a letter grade A through D:

A the proposal will be carried over to the following cycle if it is not finished B the proposal should be finished during the current cycle but will not be carried over to the next cycle.

C are 'filler' programs observed when no A or B can be scheduled D proposals will not be observed.

Now, this process is NOT perfect, BUT it is NOT a lottery, or fundamentally flawed and/or fixed..... DO NOT let that idea impact on how you write ..

Everything you can do to give your proposal a broader context, make it easier to read, more enjoyable, more clear, ... all will help your chances

What should a proposal look like?

• Should have a good, readable **"Executive Summary"** that sets the research in context, sets out the big issues in a field, says what you will do, and how the results from that will address the big issues.

• Should have a **well set out background** that expands on the context and big questions in the field.

• Should clearly **explain why the observations you propose are critical** for answering those questions

• Should clearly **demonstrate the observations / research is technically feasible**, that the time / resources requested are appropriate

• Should clearly **demonstrate that your team will be able to do the work**, and/or has a track-record for having dome similar work in the past.

- Should include "only" useful figures
- Must be readable and should be pleasurable to read.

The technical justification

The Technical Justification should fully justify the technical aspects of the requested observations and should address the following aspects:

- sensitivity
- resolution
- array configuration
- imaging
- correlator setup
- calibration
- scheduling/time constraints
- special constraints on standard observing mode
- any non-standard choices

The technical justification must be very, very clear – say what your assumptions, required S/N, number of pointings etc are, so your reasoning can be reproduced by the technical assessors.

Try to know/understand the telescope or ask to someonw who knows it

What to never do

• Do not ignore the grading or funding criteria.

• Don't submit proposals that are badly written – if English is not your first language, get a collaborator to proof read or rewrite it for you.

- Don't ask for the wrong instrument, the wrong amount of time, or the wrong semester.
- Don't rage at the panels its not their fault they didn't have enough money or telescope time last time
- Don't waffle less is more
- Don't use jargon & acronyms

• Don't assume everyone knows this scientific area is the most compelling thing ever done.

Few tips

• **Tell a story**. Make your proposal and enjoyable narrative that leads the reader from point to point.

- "Close the Loop"
- Frame your project as an experiment ("Hypothesis and Testing") rather than data gathering.
- Think seriously about the risks of a "new class of object" discovery project.
- Avoid the evil "Constrain"
- The more you "quantify" the better you get the point (i.e. avoid generic "more, much, less, few" but give numbers to give the idea that you have already dirty hands on the matter)

WAA

RS RV VLM SMBH AGN FIR

FRII ULIRG ERO SMG

CDFS PCCS EMU APEX SCUBA WTHDIM

Ask yourself...

• Would you want to read this proposal? Late at night? On a plane? Along with 80 others just like it?

• Would you be able to read and understand this proposal in under 5m per page?

• Can you FIND the main points in the proposal without reading the whole thing in all its gory detail?

• Imagine its your hard earned money, would you pay for this project?

It's not the reader's job to understand your proposal ... its your job to make them understand it.

Readers are looking for enjoyable, understandable proposals to read that present innovative ideas for new research

<u>Useful hints/contact details</u>

ALMA primer for Early science: www.almascience.eso.org/ ->proposing

Marcella Massardi

massardi@ira.inaf.it