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Why molecular lines

Probes of physical conditions: T, n(H2), ...

Selectively trace gas with specific properties: cold/hot,
shocked, dense/diffuse, ...

Star formation: protostellar activity, shocks, radiation field, ...
(see Silvia’s talk)

Chemistry of ISM: Formation of prebiotic molecules, chemical
ages, evolution of physical properties, ...
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New generation of telescopes and instruments



Unveiling excitation conditions and chemistry
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Evolution of high-mass
star-forming regions



Evolutionary sequence for high-mass clumps

Tracers Transitions

CH3CCH:
• Symmetric-top
• Good T tracer

(5− 4): 1000 sources, Eu : 12− 128K
(6− 5): 400 sources, Eu : 17− 197K
(20− 19): 100 sources, Eu : 172− 1200+K

CH3CN:
• Symmetric-top
• Good T tracer
• Hot-core tracer

(5− 4): 1000 sources, Eu : 13− 128K
(6− 5): 400 sources, Eu : 19− 197K
(19− 18): 100 sources, Eu : 167− 2500K

CH3OH:
• Slightly
asymmetric-top
• T tracer
• Hot-core tracer

(7− 6), νt = 0: 100 sources, Eu : 65− 260K
(7− 6), νt = 1: 100 sources, Eu : 350− 650K



Examples of the fits



Evolutionary sequence for high-mass clumps

Observation of progressive warm-up due to YSOs in multiple
tracers

Validation of evolutionary sequence

Compression and collapse Accretion First ZAMS stars and hot cores Accretion Disruption

L/M 2 L� M�−1 10 L� M�−1 40 L� M�−1

70w IRw IRb Hii

Giannetti, Leurini+2017, A&A, 603, 33

Identification of most important process in intervals of L/M
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Timing the high-mass star formation process
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Why an anticorrelation?
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D2H+ + HD↔ D+
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H2D+ is formed quickly in cold
and dense gas where CO is
depleted

Time lag – H2D+ → N2D+

H2D+ + N2 → N2D+ + H2

H2D+ being converted to
multiply-deuterated forms

Increased efficiency for N2D+

formation

From chemical models: age
. 105 yr for youngest clump
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H2 ortho-to-para ratio

ortho-H2 para-H2

Taken from Flower+2006

Two spin isomers of H2 exist

OPR steadily decreases with
time

Most efficient age estimator
available

Cannot be measured directly

Connected to the ortho-para
ratio of H2D+
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H2 ortho-to-para ratio

ortho-H2 para-H2

Taken from Walmsley+2004

Two spin isomers of H2 exist

OPR steadily decreases with
time

Most efficient age estimator
available

Cannot be measured directly

Connected to the ortho-para
ratio of H2D+



The age of a massive clump with SOFIA

Survey of o-H2D+ in TOP100: 17
detections!

Selected strongest clumps at
1.37 THz (∼ 300 Jy)

First tentative detection (∼ 2σ)
of p-H2D+ in high-mass clump



The age of a massive clump with SOFIA

Survey of o-H2D+ in TOP100: 17
detections!

Selected strongest clumps at
1.37 THz (∼ 300 Jy)

First tentative detection (∼ 2σ)
of p-H2D+ in high-mass clump



The age of a massive clump with SOFIA

Survey of o-H2D+ in TOP100: 17
detections!

Selected strongest clumps at
1.37 THz (∼ 300 Jy)

First tentative detection (∼ 2σ)
of p-H2D+ in high-mass clump



The age of a massive clump with SOFIA
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o-H2D+ p-H2D+

In Cycle 7 obtained 6 hrs to secure the detection

First direct measurement of ortho-para H2D+ in high-mass
regime, second in literature

One more ingredient needed to estimate clump ages
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Simulations of high-mass clumps

3D MHD simulations of collapsing high-mass clumps

Coupled with chemistry under full depletion hypothesis

Describe evolution of H+
3 (& deuterated isotopologues)

Built postprocessing pipeline to obtain synthetic observations
(Zamponi et al., in prep.)
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Clumps simulated in their environment

Ta
ke
n
fro
m
Kö
rt
ge
n+
20
18

Improved chemical network to follow time evolution of
o-H2D+/N2D+
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Input file

# List of the species that you want to fit with their relative in-
tensity (e.g. useful for isotopologues)
# name rel. intensity
species CH3CN, v=0 1
# Frequency ranges, input_file, antenna[m]
frange 91920.0 91995.0 infile1 30
frange 110340. 110400. infile2 30

# Database
db_input cdms
db_output line_database.sql
db_cached False
db_update True

source G35.20-0.74



Input file description

# Distributions for the stochastics representing column density, temperature, size, velocity, linewidth
# stochastic det_var init_guess priors parameters
spec_par log10_cd log10_N 13. Normal mu=0. tau=1./2.**2
spec_par tex T 20. TruncatedNormal mu=0.

tau=1./25.**2 a=-12 b=75.
spec_par size theta 100. Fixed value=100.
spec_par velocity V 0. Normal mu=0. tau=1./2.**2
spec_par linewidth DV 4. TruncatedNormal mu=0.

tau=1./3.**2 a=-3.5 b=30.

# Calibration factors and rms noises
# stochastic priors parameters
model_par calib_fact_0 TruncatedNormal mu=0. tau=1./0.07**2 a=-0.3 b=0.3
model_par rms_spec_0 Fixed value=0.04
model_par calib_fact_0 TruncatedNormal mu=0. tau=1./0.07**2 a=-0.3 b=0.3
model_par rms_spec_0 Fixed value=0.04
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Model file

from pymc import Normal, deterministic, Uniform, TruncatedNormal, InverseGamma, Lambda
import numpy as np
import pyclass
import modules.pmodsource_short as pmodsource
import modules.dbutils as dbutils

# ... Definition of variables ...

def get_fit(par_array, antenna, ydata, lines_input, partition_function,dbdata=None):
(lines, temperature, partfunc) = dbdata
# get the function values of the fit
yfit = np.array(pmodsource.main(par_array, antenna, lines,partition_function, ydata, lines_input))
return yfit

# Set up Priors
linewidth = TruncatedNormal(’linewidth’,mu=0.,tau=1./3.**2,b=30.,a=-3.5)
rms_spec_1 = InverseGamma(’rms_spec_1’,alpha=20.,beta=1.)
rms_spec_0 = InverseGamma(’rms_spec_0’,alpha=20.,beta=1.)
excitation_temperature = TruncatedNormal(’T’,mu=0.,tau=1./10.**2,b=50.,a=-42)
log10_col_dens = Normal(’log10_N’,mu=0.,tau=1./5.**2)
calib_fact_0 = TruncatedNormal(’calib_fact_0’,mu=0.,tau=1./0.07**2,b=0.3,a=-0.3)
velocity = Normal(’velocity’,mu=0.,tau=1./1**2)



Model file

@deterministic(plot=True)
def size(temperature=excitation_temperature,dist=distance,lumi=luminosity):
result = (2.*4.31*lumi**(5./8.)*(temperature+50.)**(-5./2.))/dist*(180./(np.pi)*3600.)
return result

@deterministic(plot=False)
def get_model_spectrum_0(log10_N=log10_col_dens, T=excitation_temperature, theta=size, V=velocity,
DV=linewidth, cf=calib_fact_0, sp_data=spec_data_0):
par_array = [[’CH3CN’],[10**(log10_N+13.)],[(T+50.)],[(theta)],[(V+0.)],[(DV+4.)],[None]]
fit = get_fit(par_array, antenna_0, sp_data, lines_input_0,partition_function=partition_func-

tion[’sp_slice_0’], dbdata=dbdata_0)
model_spec_0 = (cf + 1.) * fit
return model_spec_0

...

signal_mod_0 = Normal(’signal_mod_0’, mu=get_model_spectrum_0, tau=(1./rms_spec_0)**2,
value=spec_array[0], observed=True)
signal_mod_1 = Normal(’signal_mod_1’, mu=get_model_spectrum_1, tau=(1./rms_spec_1)**2,
value=spec_array[1], observed=True)
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Fitting algorithms

1. Maximum a posteriori estimate
• Fast
• No estimation of uncertainties

2. Normal Approximation: joint distribution of all stochastic
variables is assumed Gaussian

• Fast
• Uncertainties are estimated with the above assumption

3. Monte Carlo Markov Chains
• Slow
• Full probability distribution function for stochastics



MCWeeds flowchart

MCWeeds PyMC

Get model

spectrum

Weeds

Input file
Read spectra &

retrieve lines

Build PyMC

model

Generate pa-

rameters

Get model

spectrum

Compare obs. &

calculate P(M|D)
Accept?

No

Save parame-

ter set Yes

Niter?

Convergence

tests & plots

No

Yes
Post-processing HTML summary



Examples

Output example: HTML page



Examples

Output example: HTML page



Examples

Output example: HTML page


	Evolution of high-mass star-forming regions
	MCWeeds
	in (more) detail


