INTERPRETING MOLECULAR SPECTRA

WITH EXAMPLES

Andrea Giannetti

26 February 2019

INAF - IRA, Italian ALMA Regional Centre

Selectively trace gas with specific properties: cold/hot, shocked, dense/diffuse, ...

Selectively trace gas with specific properties: cold/hot, shocked, dense/diffuse, ...

Star formation: protostellar activity, shocks, radiation field, ... (see Silvia's talk)

Selectively trace gas with specific properties: cold/hot, shocked, dense/diffuse, ...

Star formation: protostellar activity, shocks, radiation field, ... (see Silvia's talk)

Chemistry of ISM: Formation of prebiotic molecules, chemical ages, evolution of physical properties, ...

NEW GENERATION OF TELESCOPES AND INSTRUMENTS

UNVEILING EXCITATION CONDITIONS AND CHEMISTRY

EXCITATION CONDITIONS AND COLUMN DENSITIES

EVOLUTION OF HIGH-MASS STAR-FORMING REGIONS

EVOLUTIONARY SEQUENCE FOR HIGH-MASS CLUMPS

TRACERS

CH₃CCH:

- Symmetric-top
- Good T tracer

CH₃CN:

- Symmetric-top
- Good T tracer
- Hot-core tracer

CH₃OH:

- Slightly asymmetric-top
- T tracer
- Hot-core tracer

TRANSITIONS

- (5-4): 1000 sources, E_u : 12 128K
- (6 5): 400 sources, *E_u* : 17 197K

(5-4): 1000 sources, E_u : 13 – 128K (6-5): 400 sources, E_u : 19 – 197K

 $(7-6), \nu_t = 0$: 100 sources, E_u : 65 – 260K $(7-6), \nu_t = 1$: 100 sources, E_u : 350 – 650K

EXAMPLES OF THE FITS

Observation of progressive warm-up due to YSOs in multiple tracers

EVOLUTIONARY SEQUENCE FOR HIGH-MASS CLUMPS

Observation of progressive warm-up due to YSOs in multiple tracers

Validation of evolutionary sequence

EVOLUTIONARY SEQUENCE FOR HIGH-MASS CLUMPS

Observation of progressive warm-up due to YSOs in multiple tracers

Validation of evolutionary sequence

Identification of most important process in intervals of L/M

TIMING THE HIGH-MASS STAR FORMATION PROCESS

Different evolutionary phases: $L/M < 1-10~L_\odot/M_\odot$

TIMING THE HIGH-MASS STAR FORMATION PROCESS

Different evolutionary phases: $L/M < 1-10~L_\odot/M_\odot$

Three clumps observed with APEX in $o-H_2D^+$ and $N_2D^+(3-2)$

TIMING THE HIGH-MASS STAR FORMATION PROCESS

Different evolutionary phases: $L/M < 1-10~L_\odot/M_\odot$

Three clumps observed with APEX in o-H₂D⁺ and N₂D⁺(3–2)

Opposite behaviour with evolution

 H_2D^+ is formed quickly in cold and dense gas where CO is depleted

Deuterium enrichment:

$$\begin{array}{l} H_3^+ * CO \rightarrow HCO^+ * H_2 \\ H_3^+ * HD \leftrightarrow H_2D^+ * H_2 * \Delta E \end{array}$$

 H_2D^+ is formed quickly in cold and dense gas where CO is depleted

Time lag – $H_2D^+ \rightarrow N_2D^+$

$$\mathrm{H_2D^+} + \mathrm{N_2} \rightarrow \mathrm{N_2D^+} + \mathrm{H_2}$$

Deuterium enrichment:

$$H_3^+$$
 + CO → HCO⁺ + H_2
 H_3^+ + HD ↔ H_2D^+ + H_2 + Δ

F

H₂D⁺ is formed quickly in cold and dense gas where CO is depleted

Time lag – $H_2D^+ \rightarrow N_2D^+$

 $\mathrm{H_2D^+} + \mathrm{N_2} \rightarrow \mathrm{N_2D^+} + \mathrm{H_2}$

H₂D⁺ being converted to multiply-deuterated forms

H₂D⁺ is formed quickly in cold and dense gas where CO is depleted

Time lag – $H_2D^+ \rightarrow N_2D^+$

 $\mathrm{H_2D^+} + \mathrm{N_2} \rightarrow \mathrm{N_2D^+} + \mathrm{H_2}$

H₂D⁺ being converted to multiply-deuterated forms

Increased efficiency for N_2D^+ formation

Deuterium enrichment: $H_3^+ + CO \rightarrow HCO^+ + H_2$ $H_3^+ + HD \leftrightarrow H_2D^+ + H_2 + \Delta E$ $H_2D^+ + HD \leftrightarrow D_2H^+ + H_2 + \Delta E$ $D_2H^+ + HD \leftrightarrow D_3^+ + H_2 + \Delta E$ H₂D⁺ is formed quickly in cold and dense gas where CO is depleted

Time lag – $H_2D^+ \rightarrow N_2D^+$

 $\mathrm{H_2D^+} + \mathrm{N_2} \rightarrow \mathrm{N_2D^+} + \mathrm{H_2}$

H₂D⁺ being converted to multiply-deuterated forms

Increased efficiency for N_2D^+ formation

From chemical models: age $\lesssim 10^5~{\rm yr}$ for youngest clump

Two spin isomers of H_2 exist

Two spin isomers of H_2 exist

OPR steadily decreases with time

Two spin isomers of H_2 exist

OPR steadily decreases with time

Most efficient age estimator available

Two spin isomers of H_2 exist

OPR steadily decreases with time

Most efficient age estimator available

Cannot be measured directly

Two spin isomers of H_2 exist

OPR steadily decreases with time

Most efficient age estimator available

Cannot be measured directly

Connected to the ortho-para ratio of H_2D^+

Taken from Walmsley+2004

Survey of $o-H_2D^+$ in TOP100: 17 detections!

THE AGE OF A MASSIVE CLUMP WITH SOFIA

Hand the second second

Survey of $o-H_2D^+$ in TOP100: 17 detections!

Selected strongest clumps at 1.37 THz (\sim 300 Jy)

The age of a massive clump with SOFIA

Survey of $o-H_2D^+$ in TOP100: 17 detections!

Selected strongest clumps at 1.37 THz (\sim 300 Jy)

First tentative detection ($\sim 2\sigma$) of p-H₂D⁺ in high-mass clump

THE AGE OF A MASSIVE CLUMP WITH SOFIA

In Cycle 7 obtained 6 hrs to secure the detection

The age of a massive clump with SOFIA

In Cycle 7 obtained 6 hrs to secure the detection

First direct measurement of ortho-para H₂D⁺ in high-mass regime, second in literature

THE AGE OF A MASSIVE CLUMP WITH SOFIA

In Cycle 7 obtained 6 hrs to secure the detection

First direct measurement of ortho-para H_2D^+ in high-mass regime, second in literature

One more ingredient needed to estimate clump ages

- Extremely CPU demanding (solving stiff ODEs)
- Many complex and interconnected physical processes
- Needs atomic/molecular and thermochemical data, reaction rate coefficients,...

- Python pre-processor creates ad hoc optimized F90 modules
- Chemistry, dust-related physics, cooling, heating, photoionization,...
- Open source (Grassi+2014)
- Highly optimized code, based on "fast" solver (DLSODES)
- Hydrocodes-ready, RAMSES, ENZO, FLASH, GASOLINE, GIZMO,...
- > 30 papers (CEMP-stars, molecular clouds, galaxies, BHs, AGBs, pp-disks, . . .)

Coupled with chemistry under full depletion hypothesis

Coupled with chemistry under full depletion hypothesis

Describe evolution of H_3^+ (& deuterated isotopologues)

Coupled with chemistry under full depletion hypothesis

Describe evolution of H_3^+ (& deuterated isotopologues)

Built postprocessing pipeline to obtain synthetic observations (Zamponi et al., in prep.)

SIMULATIONS OF HIGH-MASS CLUMPS

Clumps simulated in their environment

Clumps simulated in their environment

Improved chemical network to follow time evolution of $o-H_2D^+/N_2D^+$

Clumps simulated in their environment

Improved chemical network to follow time evolution of $o\text{-}H_2D^+/N_2D^+$

Simulations are running

MCWEEDS

IN (MORE) DETAIL

INPUT FILE

# List of the species that you want to fit with their relative in-							
tensity (e.g. useful for isotopologues)							
#		name	rel. intensity				
species		CH3CN, v=0	1				
# Frequency ranges,		input_file,	antenna[m]				
frange 91920.0 91995.0		infile1	30				
frange 110340. 110400.		infile2	30				
# Database db_input cdms db_output line_databas db_cached False db_update True		se.sql					
source	G35.20-0.74						

INPUT FILE DESCRIPTION

# Distributions for the stochastics representing column density, temperature, size, velocity, linewidth							
#	stochastic	det_var	init_guess	priors	parameters		
spec_par	log10_cd	log10_N	13.	Normal	mu=0. tau=1./2.**2		
spec_par	tex	Т	20.	TruncatedNormal	mu=0.		
					tau=1./25.**2 a=-12 b=75.		
spec_par	size	theta	100.	Fixed	value=100.		
spec_par	velocity	V	0.	Normal	mu=0. tau=1./2.**2		
spec_par	linewidth	DV	4.	TruncatedNormal	mu=0.		
					tau=1./3.**2 a=-3.5 b=30.		
# Calibration factors and rms noises							
# stochastic priors			parameters				
model_par	calib_fact_	0 Trunca	atedNormal	mu=0. tau=1./0.07**2	2 a=-0.3 b=0.3		
model par	rms spec	ms spec 0 Fixed		value=0.04			
model par	calib fact	0 Trunca	atedNormal	mu=0. tau=1./0.07**2	2 a=-0.3 b=0.3		
model par	rms spec	0 Fixed		value=0.04			
	= =						

MODEL FILE

```
from pymc import Normal, deterministic, Uniform, TruncatedNormal, InverseGamma, Lambda
import numpy as np
import pyclass
import modules.pmodsource short as pmodsource
import modules.dbutils as dbutils
# Definition of variables
def get_fit(par_array, antenna, ydata, lines_input, partition_function,dbdata=None):
  (lines, temperature, partfunc) = dbdata
  # get the function values of the fit
  vfit = np.arrav(pmodsource.main(par array, antenna, lines.partition function, vdata, lines input))
  return vfit
# Set up Priors
linewidth = TruncatedNormal('linewidth',mu=0.,tau=1./3.**2,b=30.,a=-3.5)
rms spec 1 = InverseGamma('rms spec 1',alpha=20,.beta=1,)
rms spec 0 = InverseGamma('rms spec 0',alpha=20,.beta=1,)
excitation temperature = TruncatedNormal('T',mu=0.,tau=1./10.**2,b=50.,a=-42)
log10 col dens = Normal('log10 N',mu=0.,tau=1./5.**2)
calib fact 0 = TruncatedNormal('calib fact 0'.mu=0..tau=1./0.07**2.b=0.3.a=-0.3)
velocity = Normal('velocity',mu=0.,tau=1./1**2)
```

MODEL FILE

```
@deterministic(plot=True)
def size(temperature=excitation_temperature.dist=distance.lumi=luminosity);
  result = (2.*4.31*lumi**(5./8.)*(temperature+50.)**(-5./2.))/dist*(180./(np.pi)*3600.)
  return result
@deterministic(plot=False)
def get_model_spectrum_0(log10_N=log10_col_dens, T=excitation_temperature, theta=size, V=velocity,
DV=linewidth, cf=calib fact 0, sp data=spec data 0):
  par array = [['CH3CN'],[10**(log10 N+13.)],[(T+50.)],[(theta)],[(V+0.)],[(DV+4.)],[None]]
    fit = get fit(par array, antenna 0, sp data, lines input 0.partition function=partition func-
tion['sp slice 0'], dbdata=dbdata 0)
  model spec 0 = (cf + 1.) * fit
  return model spec 0
signal mod 0 = Normal('signal mod 0'.
                                              mu=get model spectrum 0.
                                                                            tau=(1./rms spec 0)**2.
value=spec arrav[0]. observed=True)
signal mod 1 = Normal('signal mod 1',
                                              mu=get model spectrum 1, tau=(1./rms spec 1)**2.
value=spec array[1], observed=True)
```


1. Maximum a posteriori estimate

- Fast
- No estimation of uncertainties
- 2. Normal Approximation: joint distribution of all stochastic variables is assumed Gaussian
 - Fast
 - $\cdot\,$ Uncertainties are estimated with the above assumption
- 3. Monte Carlo Markov Chains
 - Slow
 - Full probability distribution function for stochastics

🔕 🗩 🗉 🛛 andrea@Newton: ~/Documents/mcweeds_group/source									
andrea@Newton: ~/Documents/mcweeds_gr ×	andrea@Newton: ~/Documents/mcweeds_gro	×							
[] []2%]	36985 of 40000 complete in 114.9 sec 37135 of 40000 complete in 115.4 sec								
[93%] [93%]	37284 of 40000 complete in 115.9 sec 37436 of 40000 complete in 116.4 sec								
[93%] [94%]	37587 of 40000 complete in 116.9 sec								
[94%]	37891 of 40000 complete in 117.9 sec								
[]	38190 of 40000 complete in 119.0 sec								
[96%]	38492 of 40000 complete in 120.0 sec								
[96%]	38794 of 40000 complete in 121.0 sec								
[97%]	39094 of 40000 complete in 122.0 sec								
[98%]	39397 of 40000 complete in 123.0 sec								
[] [99%]	39699 of 40000 complete in 124.0 sec								
[]	40000 of 40000 complete in 125.0 sec								
MCMC finished Writing summaries									

EXAMPLES

andrea@Newton: ~/Documents/mcweeds group/source andrea@Newton: ~/Documents/mcweeds_gr... × andrea@Newton: ~/Documents/mcweeds_gro... × Rafterv-Lewis Diagnostic 1825 iterations required (assuming independence) to achieve 0.01 accuracy with 9 5 percent probability. Thinning factor of 1 required to produce a first-order Markov chain. 2 iterations to be discarded at the beginning of the simulation (burn-in). 1789 subsequent iterations required. Thinning factor of 1 required to produce an independence chain. Processing excitation temperature _____ Raftery-Lewis Diagnostic _____ 1825 iterations required (assuming independence) to achieve 0.01 accuracy with 9 5 percent probability. Thinning factor of 1 required to produce a first-order Markov chain.

😕 亘 💿 🛛 andrea@Newton: ~/Documents/mcweeds_group/source

```
andrea@Newton: ~/Documents/mcweeds_gr... × andrea@Newton: ~/Documents/mcweeds_gro... ×
```

```
Thinning factor of 2 required to produce an independence chain.
Could not calculate Gelman-Rubin statistics. Requires multiple chains of equal l
enath.
                       *****
Best fit parameters chain 0 :
Species: CH3CN
log10 col dens 13.6442266391 , 13.5921833085 13.6995242542
excitation temperature 53.8339360278 . 49.4726953484 57.7881884956
size 100.0 None
velocity 0.134295486607 . 0.04175963317 0.22752306975
linewidth 4.94223968611 . 4.721066895 5.1400558639
calib_fact_0 1.03507728941 , 0.929935921351 1.13359633074
calib_fact_1 0.964248074973 , 0.868511588271 1.05773210222
rms spec 0 0.0431085045918 , 0.0403838829195 0.0464037501529
rms_spec_1 0.0540167672227 , 0.0507941299323 0.0574697529438
Getting intensities...
olobal on-screen inactive filter: FF------
global to-mesfile inactive filter: FEWRI--CU
andrea@Newton:~/Documents/mcweeds group/source$
```

Output example: HTML page