l	Introduction	G353.2+0.9	Results	Conclusions	Future Observations

Molecular gas under the influence of nearby massive stars: the case of G353.2+0.9

Andrea Giannetti

Dipartimento di Astronomia, Università di Bologna; Istituto di Radioastronomia

In collaboration with Brand, J. (IRA, Bologna), Massi, F. (Arcetri, Firenze) and Beltrán, M. T. (Arcetri, Firenze)

2 apr 2012

Introduction	G353.2+0.9	Results	Conclusions	Future Observations
NCCCOFZ				

NGC6357 (2.5 kpc) - 8 μm

 Presence of a large cavity (or a number of smaller ones)

Introduction	G353.2+0.9	Results	Conclusions	Future Observations
NGC6357				

NGC6357 (2.5 kpc) - 8 $\mu\mathrm{m}$

NOTE — Taken from hubblesite.org

- Presence of a large cavity (or a number of smaller ones)
- G353.2+0.9 coincides with the brightest emission

Introduction	G353.2+0.9	Results	Conclusions	Future Observations
NCCCCT				
NGC6357				

NGC6357 (2.5 kpc) - 8 μm

NOTE — Taken from hubblesite.org

- Presence of a large cavity (or a number of smaller ones)
- G353.2+0.9 coincides with the brightest emission
- Pismis 24 is found south of this region

Introduction	G353.2+0.9	Results	Conclusions	Future Observations
M/hv G35	3 2 1 0 9 7			

- Perfect region to study the interaction between molecular gas and massive stars
 - Main IF seen edge-on
 - Optimal for studying fragmentation and chemical stratification
- Connection between G353.2+0.9 and Pismis 24: Just ionization or also triggered SF?

Introduction	G353.2+0.9	Results	Conclusions	Future Observations
6353 211	N AK SEST			

Sofl K_s band + CS(5-4)

- Observed transitions: C¹⁸O(1-0), C¹⁸O(2-1), CN(1-0), CN(2-1), CS(2-1), C³⁴S(2-1), CS(3-2), CS(5-4), H₂CO(2_{1,2}-1_{1,1}), SiO(5-4), CH₃CCH(6-5)
- Molecular gas found in the North
- Aligned along the IF
- Associated with the elephant trunk

Introduction	G353.2+0.9	Results	Conclusions	Future Observations

Individual Clumps

Dashed blue line: Observed region

Giannetti, A. (UniBo, IRA)

Introduction	G353.2+0.9	Results	Conclusions	Future Observations
Individual	Clumps			

Δα

Dashed blue line: Observed region

Giannetti, A. (UniBo, IRA)

Introduction	G353.2+0.9	Results	Conclusions	Future Observations
	_			

Excitation Temperatures

$$\begin{split} &\frac{T_{\rm MB,C^{18}O(2-1)}}{T_{\rm MB,C^{18}O(1-0)}} = 4 {\rm e}^{-10.50/{\rm T}_{\rm ex}} \\ & N = f(T_{\rm ex}) \frac{\tau}{1-{\rm e}^{-\tau}} \int T_{\rm MB} dv \end{split}$$

- Typical range of temperatures: $\sim 15-20 \ {\rm K}$
- Small rise in temperature coinciding with the ionization front
- C¹⁸O shows a relative minimum coinciding with the center of some clumps: Internal layers are cooler

Introduction	G353.2+0.9	Results	Conclusions	Future Observations

Excitation Temperatures

CH₃CCH J=6-5

Efficient kinetic temperature tracer

Introduction	G353.2+0.9	Results	Conclusions	Future Observations

Excitation Temperatures

Boltzmann plot:

 $\begin{array}{l} \text{slope} \propto \mathsf{T}^{-1} \\ \text{intercept} \propto \mathsf{log}(\mathsf{N}) \end{array}$

- Efficient kinetic temperature tracer
- High-density layers can be hotter
- Internal heating sources

Introduction	G353.2+0.9	Results	Conclusions	Future Observations
	_			

H₂ Column Densities

- Independent way to derive the mass and column density of the dust, and thus those of the gas, assuming a value for the gas-to-dust ratio
- Other assumptions:
 - Grey body emission
 - Temperature
- Morphology of emission similar to integrated molecular emission, and following IR obscuration features

Introduction	G353.2+0.9	Results	Conclusions	Future Observations

Abundances

Colours scale: molecular abundance; Contours: Column density

- Determined dividing N_{mol} maps by N_{H2} (smoothed!) maps from APEX image
- Abundances have similar patterns for all molecules considered
- Increase with distance from the ionizing stars
- $[^{13}CO/H_2]$: $1.0 2.2 \times 10^{-6}$
- $[C^{18}O/H_2]$: $0.9 2.3 \times 10^{-7}$
- $[H_2CO/H_2]: 0.6 1.5 \times 10^{-9}$

Non-LTE Analysis: The Bayesian Approach

• Large grid of RADEX models with different parameters (T_k, N_{mol}, n_{H_2})

Probability:

 $P(T_k, N_{mol}, n_{H_2}|\text{data}) = \phi P(\text{data}|T_k, N_{mol}, n_{H_2}) P(T_k, N_{mol}, n_{H_2})$

• Assumptions:

- Source size fixed as determined from CS(5-4)
- Gaussian uncertainties for measured line temperatures, fluxes, au
- Constant priors for CS (i.e. all the values for the parameters are equally probable)
- Gaussian prior for T_k ($\mu = 35$ K, $\sigma = 30$ K) for CN

Non-LTE Analysis: Results

CS results

Offset (")	CI.	Т _К (К)	1σ (K)	$n_{\rm H_2} (10^4 imes { m cm}^{-3})$	1σ $(10^4 \times cm^{-3})$	$(10^{13} \times \mathrm{cm}^{-2})$	$1\sigma (10^{13} \times cm^{-2})$	[CS/H ₂] (10 ⁻⁹)	$\tau_{\rm 21}$	$\tau_{\rm 32}$	$ au_{54}$	$\tau_{\rm C^{34}S,21}$	$T_{ex,21}$ (K)	$T_{ex,32} (K)$	T _{ex,54} (K)	T _{ех С³⁴S,21} (К)
(-100,200)	А	33	10 - 64	17	4.8 - 36	4.2	3.9 - 4.9	26	0.7	1.5	0.5	0.05	14	10	7	12
(-50,150)	В	25	11 - 35	18	8.3 - 30	7.4	6.1 - 7.7	5.2	1.4	2.5	1.2	0.09	13	10	6	11
(0,0)	С	40	10 - 72	5.3	1.9 - 8.3	4.3	3.1 - 6.1	9.5	1.2	1.4	0.1	0.08	8	6	6	6
(0,50)	С	18	11 - 20	25	14 - 52	21	14 - 52	2.7	2.4	4.1	2.2	0.17	13	11	6	10
(-50, 100)	D	26	10 - 40	22	5.8 - 63	16	15 - 19	3.4	1.6	3.1	2.0	0.12	16	12	7	13
(100,50)	E	11	10 - 15	260	130 - 480	18	15 - 19	40	3.8	5.1	2.7	0.20	11	11	9	11
(-100,100)	F	29	10-40	14	5.8 - 25	2.1	1.6 - 2.5	0.7	0.5	0.8	0.1	0.03	11	7	6	10

CN results

Offset (")	CI.	Т _К (К)	1σ (K)	$(10^5 \times { m cm}^{-3})$	1σ $(10^5 \times cm^{-3})$	$\stackrel{N_{\rm CN}}{(10^{14} \times {\rm cm}^{-2})}$	1σ (10 ¹⁴ × cm ⁻²)	τ_{10}	τ_{21}	T _{ex ,10} (K)	T _{ex ,21} (K)
(-50,150)	А	35	21 - 57	2.8	1.2 - 7.6	2.6	2.2 - 3.4	1.2	4.0	17	10
(-75, 150)	В	25	11 - 35	2.3	0.8 - 7.6	0.7	0.6 - 0.9	0.9	1.6	9	6
(0,50)	C	33	26 - 40	18	11 - 28	2.3	1.9 - 3.0	0.2	1.6	67	18
(-50, 100)	D	45	30 - 68	3.3	1.7 - 6.3	2.2	1.6 - 3.0	0.7	3.2	26	11
(75,50)	E	34	28 - 42	37	23 - 69	1.8	1.4 - 2.2	0.2	1.1	62	25
(50,75)	G	41	28 - 58	6.8	3.0 - 16	1.9	1.4 - 2.5	0.2	2.2	62	14
(-50,100)	н	33	21-57	2.5	1.0 - 6.3	1.7	1.4 - 2.2	1.2	3.5	15	8

• T_k derived from CN is on average slightly higher that that derived from CS

 \circ n_{H2} derived from CN is higher that that derived from CS, and increases toward Pismis 24

Conclusion:

CN is indeed a good PDR tracer

LTE values completely different! Non-LTE analysis is fundamental to infer the physical properties of the gas from some molecules; the Bayesian approach is powerful for this

Introduction	G353.2+0.9	Results	Conclusions	Future Observations

- Similar pattern for the abundance as the other molecules
- $[CN/H_2]$: $5.0 7.9 \times 10^{-9}$
- Smaller variation w.r.t. the other molecules: corroborates the idea that most of its emission comes from the PDR

Introduction	G353.2+0.9	Results	Conclusions	Future Observations

A (simple) Stability Analysis

- $\alpha \equiv M_{\rm vir}/M_{\rm LTE}$
- No magnetic or rotational support

• For
$$M\gtrsim$$
 50 ${
m M}_{\odot}$, $lpha\sim$ 1

Introduction	G353.2+0.9	Results	Conclusions	Future Observations

Selective Photodissociation

Radiation field G_0 :

$$G_0 = rac{1}{1.6 imes 10^{-3} {
m erg \ cm^{-2} \ s^{-1}}} rac{L}{4 \pi D^2}$$

Considering the luminosity of the three most luminous stars (2 O3.5, 1 O4):

• $G_0 \sim 5.6 imes 10^4$ at the location of the elephant trunk

•
$${\it G}_0\sim 2.0 imes 10^4$$
 at the location of the IF

- Relative ¹³CO/C¹⁸O abundance in agreement with the PDR models for the regions near the IF
- $\bullet\,$ The measured $^{13}\text{CO}/\text{C}^{18}\text{O}$ can be explained in terms of selective photodissociation

Introduction	G353.2+0.9	Results	Conclusions	Future Observations
Summary				
Summary				

- Gas temperature between $\sim 10-50~{\rm K}$
- The gas appears already fragmented at these low angular resolution
- Obtained abundance maps: molecular abundances decrease toward the IF
- n_{H_2} between $\sim 10^3$ cm⁻³ (C¹⁸O) and $\sim 10^{5-6}$ cm⁻³ (CS and CN) increasing toward the IF
- CN is indeed an efficient PDR tracer
- Non-LTE analysis is fundamental to infer the physical properties of the gas
- The Bayesian approach is extremely powerful for this
- $\bullet\,$ Clumps with masses $M\gtrsim50{
 m M}_{\odot}$ appear to be gravitationally bound
- Selective photodissociation decrease the C¹⁸O abundance w.r.t. that of ¹³CO, near the IF

EVLA $NH_3(1,1)$ and (2,2) Observations

Sofl K_s band + CS(5-4)

• Efficient tracer of dense gas

- High sensitivity and angular resolution ($\theta \sim 1''$, CnB)
- Study of the fragmentation along and across the PDR
- Investigate the small-scale, ordered motions of and in the clumps
- Evaluate the impact of embedded, newly formed stars

Introduction	G353.2+0.9	Results	Conclusions	Future Observations

NIR (J, H, K_s) RGB image

- Submitted proposal for ALMA cycle 0
- Multiple transitions from several molecules (H₂CO, CCH, SiO, CO isotopologues, etc.)
- Aim: study the chemical stratification along and across the PDR

Introduction	G353.2+0.9	Results	Conclusions	Future Observations

Spitzer IRAC

Massi, Beltrán, Brand, Giannetti et al., in prep.

- Apparently 3 more clusters in the complex
- Pismis 24 has a Salpeter IMF
- YSOs identification in the whole region with IRAC color-color diagrams
- G353.2+0.9: Study of the YSOs in J, H, K, 4 IRAC bands and X

Introduction	G353.2+0.9	Results	Conclusions	Future Observations

Spitzer IRAC

Massi, Beltrán, Brand, Giannetti et al., in prep.

- Apparently 3 more clusters in the complex
- Pismis 24 has a Salpeter IMF
- YSOs identification in the whole region with IRAC color-color diagrams
- G353.2+0.9: Study of the YSOs in J, H, K, 4 IRAC bands and X

Introduction	G353.2+0.9	Results	Conclusions	Future Observations

Spitzer IRAC

Massi, Beltrán, Brand, Giannetti et al., in prep.

- Apparently 3 more clusters in the complex
- Pismis 24 has a Salpeter IMF
- YSOs identification in the whole region with IRAC color-color diagrams
- G353.2+0.9: Study of the YSOs in J, H, K, 4 IRAC bands and X

Introduction	G353.2+0.9	Results	Conclusions	Future Observations

Introduction	G353.2+0.9	Results	Conclusions	Future Observations

Probability:

$$P(T_k, N_{mol}, n_{H_2} | \text{data}) = \phi P(\text{data} | T_k, N_{mol}, n_{H_2}) P(T_k, N_{mol}, n_{H_2})$$

CS:

$$P(data|T_{\rm K}, N_{mol}, n_{H_2}) = rac{1}{arphi} \Big[\prod_{i=1}^{4} ({
m e}^{-({
m l}_i - \mu_i)^2/(2\sigma_{{
m l},i}^2)}) \Big] P(au_{{
m C}^{34}{
m S}}),$$

CN:

$$P(\textit{data}|T_{\rm K},\textit{N_{mol}},\textit{n_{H_2}}) = \frac{1}{\varphi} \Big[\prod_{i=1}^{2} (e^{-({\rm F_i}-{\rm F_{m,i}})^2/(2\sigma_{{\rm F,i}}^2)}) \Big] e^{-(\tau_{\rm tot,(1-0)}-\tau_{\rm m,(1-0)})/(2\sigma_{\tau}^2)},$$