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Outline 
•  theory of synthesis imaging :  FTs and uv coverage 
•  demonstration of deconvolution a.k.a. clean 
•  casa clean:   

–  basic image parameters 
–  continuum & cubes 
–  single fields & mosaicing 
–  weighting  
–  clean algorithms 
–  stopping & interactive 
–  multiscale 

•  image analysis & viewer 
•  uvcontsub 
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1.  An interferometer measures the interference pattern produced by 
two apertures. 

2.  The interference pattern is directly related to the source 
brightness. In particular, for small fields of view the complex 
visibility, V(u,v), is the 2D Fourier transform of the brightness on 
the sky, T(x,y) 

(van Cittert-Zernike theorem)  T(x,y) x 

y 

uv plane 

Fourier space/domain 

Image space/domain 

image plane 

From Sky Brightness to Visibility 



Some 2D Fourier Transform Pairs 
T(x,y) 

narrow features transform to wide features (and vice-versa) 

Amp{V(u,v)} 

Gaussian 

δ Function  Constant  

Gaussian 
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More 2D Fourier Transform Pairs 

T(x,y) Amp{V(u,v)} 

elliptical 
Gaussian 

sharp edges result in many high spatial frequencies 

elliptical 
Gaussian 

Disk Bessel  



More 2D Fourier Transform Pairs 

T(x,y) 

complicated structure on many scales 

Amp{V(u,v)} 



7 S. T. Myers 

Real Example:  VLA observes Jupiter 
•  A 6cm VLA observation of Jupiter: 

Fourier transform of 
nearly symmetric 
planetary disk 

bad data 
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Real Example:  ALMA observes Titan 
•  From SV  TWHydra casaguide  

Fourier transform of 
nearly symmetric 
planetary disk 

Contamination 
at short 
baselines by 
Saturn 
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•  sample Fourier domain at discrete points 

•  the inverse Fourier transform is 

•  the convolution theorem tells us 

    where                                   (the point spread function) 

Fourier transform of sampled visibilities yields the true sky 
brightness convolved with the point spread function 

(the “dirty image” is the true image convolved with the “dirty beam”)                      

But 



2 Antennas 



3 Antennas 



4 Antennas 



8 Antennas 



16 Antennas - Compact 



16 Antennas - Extended 



16 Antennas – Compact – 8 hours 

•  Sky response = PSF = dirty beam = Fourier 
transform of uv distribution 
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(imperfect) Reconstruction of the Sky 
•  Incomplete sampling of uv plane:  sidelobes 
•  non-point-like instrumental response  A    a.k.a finite primary beam 

V(u,v) = A  FT{ T(x,y) }  
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(imperfect) Reconstruction of the Sky 
•  Incomplete sampling of uv plane:  sidelobes 
•  non-point-like instrumental response  A  
•  noise 

V(u,v) = A  FT{ T(x,y) } + n  

•  Need to invert, but 
–  FFT requires information on a regular grid in uv plane 

–  Ideal:  gridding would invert instrument response A = FT of primary 
beam, but its not invertible.  

–  Use spheroidal function for single-field imaging, use PB for mosaic imaging 
* spheroidal are generally more tapered, less aliasing 



How to analyze (imperfect) interferometer data? 
•  uv plane analysis 

–  best for “simple” sources, e.g. point sources, disks 

•  image plane analysis 
–  dirty image TD(x,y) = Fourier transform { V(u,v) }  
–  deconvolve b(x,y) from TD(x,y) to determine (model of) T(x,y) 

visibilities                dirty image          sky brightness 



20 

•  Find brightest points in dirty image 
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•  Find brightest points in dirty image 
•  Create model image containing a 

fraction of those flux points 
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•  Find brightest points in dirty image 
•  Create model image containing a 

fraction of those flux points 
•  Subtract model from data,      

leaving a residual 
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•  Find brightest points in dirty image 
•  Create model image containing a 

fraction of those flux points 
•  Subtract model from data,      

leaving a residual 
•  Final product = residual + model 
    (convolved with restoring                                                            

Gaussian beam)  
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residual  (log scale) model convolved w/ restorimg beam  
(log scale) 

cleaned image   (log scale) residual  (linear scale) 
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residual  (log scale) model convolved w/ restoring beam  
(log scale) 

cleaned image   (log scale) residual  (linear scale) 

restrict where the 
algorithm can search for 
clean components, with a 
mask 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
   10 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
   20 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
   30 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
   40 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
   50 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
   60 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
   70 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
   80 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
   90 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
  100 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
  125 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
  150 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
  200 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
  300 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
  400 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
  500 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
 1000 iterations 
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residual  (log scale) model convolved w/ restoring beam 

cleaned image   (log scale) residual  (linear scale) 
 1500 iterations 
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cleaned image   (log scale) dirty image   (log scale) 

Deconvolution 
Results depend on: 
•  image parameters:  size, cell, weighting, mosaic, cube 
•  deconvolution parameters:  algorithm, iterations, boxing, stopping 

criteria   



Deconvolution 
•  to keep you awake at night 

–  ∃ an infinite number of T(x,y) compatible with sampled V(u,v), i.e. 
“invisible” distributions R(x,y) where b(x,y) ⊗ R(x,y) = 0  

•  no data beyond umax,vmax → unresolved structure 
•  no data within umin,vmin → limit on largest size scale 
•  holes between umin,vmin and umax,vmax → sidelobes 

–  noise → undetected/corrupted structure in T(x,y) 
–  no unique prescription for extracting optimum estimate of true sky 

brightness from visibility data 

•  deconvolution   
–  uses non-linear techniques effectively interpolate/extrapolate 

samples of V(u,v) into unsampled regions of the (u,v) plane 
–  aims to find a sensible model of T(x,y) compatible with data 
–  requires a priori assumptions about T(x,y) 



the clean task in casapy: 
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the clean task in casapy: 
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•  (visibility) data selection 

•  gridding & inversion 

•  basic image parameters 

•  deconvolution 



visibility data selection 

•  searches by name before index   
•  field >1 MUST use imagermode=mosaic          
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Basic Image Parms: Pixel Size and Image Size 
•  pixel size 

–  should satisfy sampling theorem for the longest baselines,        
  Δx < 1/(2 umax ), Δy < 1/(2 vmax) 

–  in practice, 3 to 5 pixels across the main lobe of the dirty beam 

•  image size 
–  natural resolution in (u,v) plane samples FT{A(x,y)}, implies image size 

2x primary beam 
–  e.g., ALMA: 870 µm, 12 m telescope → 2x 18 arcsec 

*  not restricted to powers of 2 (in fact internal padding complicates)  
*  if there are bright sources in the sidelobes of A(x,y), then they will be 

aliased into the image (need to make a larger image) 



plotuv 
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im.advise 
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0.5/maxuv – absolute minimum;  
recommend < 0.2 = 1.1arcsec 



Why sample the PSF so finely? 
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•  Gridding prevents arbitrary placement of model components 

dirty image of 2 pt sources residual after cleaning both 



Why sample the PSF so finely? 
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•  Gridding prevents arbitrary placement of model components 

dirty image of 2 pt sources 
The source centered 
on a cell can be 
cleaned to <10-3 

The source on cell 
edge has residuals at 
the <10-2 level 

linear scale ± 0.5% 



Why sample the PSF so finely? 
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•  Gridding prevents arbitrary placement of model components 

dirty image of 2 pt sources 
Now both sources can 
be cleaned to <10-3 

linear scale ± 0.5% 



the clean task in casapy: 
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•  (visibility) data selection 

•  gridding & inversion 

•  basic image parameters 

•  deconvolution 



Gridding & Inversion: MFS 
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-0.15 

+0.5 
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higher order MFS 
•  MFS (mode mfs) 

–  nterm=2 compute spectral index, 3 for curvature etc. 
–  needed for bandwidths ~5% or more (S/N dependent) 
–  tt0 average intensity, tt1 alpha*tt0, alpha images output 
–  takes at least nterms longer (image size dependent) 

Average intensity at what frequency? 

(stopping criteria also @ restfreq)   
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Gridding & Inversion: cubes 

mode = channel, velocity, frequency 
–  data: taken in sky frequency (terrestria,l TOPO) frame 

•  velocity: include doppler shifts from: 
–  Earth rotation: few km/s (diurnal) 
–  Earth orbit: 30 km/s (annual) 
–  Earth/Sun motion w.r.t. LSR (e.g. LSRK, LSRD) 
–  maybe galactic rotation to extragalactic frames  

–  imaging applies doppler corrections on the fly, works in LSRK 
–  you choose the subsequent output cube parameters 

–  can shift and regrid data before imaging : cvel 
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Gridding & Inversion: mosaics 

ftmachine = “ft” : shift and add in image plane 
ftmachine = “mosaic” : add in uv plane and invert together 
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offset & add 

Gridding & Inversion: mosaics 
Mosaicing in the sky plane 

Δθ mL L 
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offset & add 
ftmachine=ft 

phase 
 gradients 
ftmachine =  
   mosaic  

Gridding & Inversion: mosaics 
Mosaicing in the sky and uv planes 

Δθ 

(Δθ)-1 (L)-1 

mL L 

(mL)-1 

FT{f(x)} = F(u)  Fourier shift theorem FT{f(x-x0)} = F(u)ei2πx0u 
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Gridding & Inversion: mosaics 
ftmachine = “mosaic” : add in uv plane and invert together 

 A-projection kernel (FT of PB) 
 uses approximate single PSF for entire mosaic 
 uses POINTING table when present (FIELD for phases) 

ftmachine = “ft” : shift and add in image plane 
 slower 
 sometimes better for sparsely sampled mosaic, and/or poor uv coverage 

ftmachine = “” or “csclean” : single field 
 spheroidal (highly tapered) gridding kernel 
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Gridding & Inversion: output 
imagename.image     imagename.model 
imagename.residual     imagename.psf 

imagename.flux (PB plus weights plus extra PB from A-convolution) 
imagename.flux.pbcoverage (just the PB effects) 
to correct to flux on-sky use .image/.flux 



Dirty Beam Shape and Weighting 

•  introduce weighting function W(u,v) 

–  W modifies sidelobes of dirty beam 
    (W is also gridded for FFT) 

•  “Natural” weighting 
–  W(u,v) = 1/σ2(u,v) at points with data and          

zero elsewhere, where σ2(u,v) is the noise 
variance of the (u,v) sample 

–  maximizes point source sensitivity          
(lowest rms in image) 

–  generally more weight to short baselines (large 
spatial scales), degrades resolution 
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Dirty Beam Shape and Weighting 

•  “Uniform” weighting 
–  W(u,v) is inversely proportional to local 

density of (u,v) points, so sum of weights    
in a (u,v) cell is a constant (or zero) 

–  fills (u,v) plane more uniformly, so          
(outer) sidelobes are lower 

–  gives more weight to long baselines and 
therefore higher angular resolution 

–  degrades point source sensitivity               
(higher rms in image) 

–  can be trouble with sparse sampling:       
cells with few data points have same weight 
as cells with many data points 



Dirty Beam Shape and Weighting 

•  “Robust” (Briggs) weighting 
–  variant of “uniform” that avoids giving too much 

weight to cell with low natural weight 
–  implementations differ, e.g. SN is natural weight 

of a cell, St is a threshold 

–  large threshold → natural weighting 
–  small threshold → uniform weighting 
–  an adjustable parameter that allows for 

continuous variation between highest angular 
resolution and optimal point source sensitivity 



Dirty Beam Shape and Weighting 

•  “Tapering” 
–  apodize the (u,v) sampling by a Gaussian 

     t = tapering parameter (in kλ; arcsec) 
–  like smoothing in the image plane (convolution 

by a Gaussian) 
–  gives more weight to short baselines, degrades 

angular resolution 
–  degrades point source sensitivity but can 

improve sensitivity to extended structure 



Robust 0 
+ Taper 

0.77x0.62 

σ=1.7 

Weighting and Tapering: Noise 

Natural 
0.77x0.62 

σ=1.0 

Uniform 
0.39x0.31 

σ=3.7 

Robust 0 
0.41x0.36 

σ=1.6 



Weighting and Tapering: Summary 

Robust/Uniform Natural Taper 

Resolution higher medium lower 
Sidelobes lower higher depends 
Point Source 
Sensitivity 

lower maximum lower 

Extended Source 
Sensitivity 

lower medium higher 

•  imaging parameters provide a lot of freedom 
•  appropriate choice depends on science goals 



the clean task in casapy: 
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•  (visibility) data selection 

•  gridding & inversion 

•  basic image parameters 

•  deconvolution 



Deconvolution algorithms 
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data visibilities dirty image 

model image 

grid & FFT 

Iterative removal of 
dirty beam 

Hogbom clean:  (Högbom 1974) 
  subtracts full PSF in image domain 
  fast but not very accurate: errors build 



Deconvolution algorithms 
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data visibilities 

gridded 
model 

dirty image 

model image 

grid 

Iterative removal of 
dirty beam 

FFT 

subtract 

Clark : 
  subtracts truncated PSF in image domain 
  periodically subtracts from gridded data in uv domain 
  major/minor cycle frequency controlled by cyclefactor parameter 

minor cycle major cycle 

gridded 
data 

FFT 



Cotton-Schwab : 
  subtracts truncated PSF in image domain 
  major cycle subtracts from full visibilities 
  significant I/O per major cycle 

Deconvolution algorithms 
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data visibilities 

model visibilities 

dirty image 

model image 

grid & FFT 

Iterative removal of 
dirty beam 

FFT & degrid 

subtract 

minor cycle 
major cycle 



Stopping criteria 

•  # iterations: arbitrary – set large and only use for safety 
•  threshold:  max of residual map 

–  multiple of rms noise if noise-limited 
–  fraction of brightest source peak flux if dynamic-range limited 
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Interactive Clean 
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•  residual image in viewer 

•  define a mask with R-click 
on shape type 

•  define the same mask for 
all channels 

•  or iterate through the 
channels with the tape 
deck and define separate 
masks  



Interactive Clean 
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•  perform N iterations 

•  and return – every time 
the residual is displayed is 
a major cycle 

•  continue until #cycles        
or  threshold reached,        
or user stop 
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Sparse Approximation Imaging [multiscale] 
•  Problem: find a model to represent the sky as efficiently as possible, subject 

to the data constraints and within the noise uncertainty, possibly also subject 
to prior constraints. 
–  some problems (like ours) cannot be efficiently reconstructed using 

orthonormal bases (like pixels or Fourier modes) 
–  use non-orthogonal bases: multiscale (e.g. Gaussians) 
–  choose dictionary of model elements (atoms) 
–  efficiency: find a representation that uses the fewest number of atoms 

•  Multiscale = [0,5,15,45] 
–  scales are in units of pixels 
–  0=point, typically 1-2x synthesized beam, then multiples of 2-3x that up 

to a fraction of the PB can be tricky to get to work right 

–  separate clean multiscale components not kept (Minor Cycle algorithm) 
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1-scale model  (log scale) multiscale model (log scale) 

residual (linear scale) residual (linear scale) 
  10 iterations 
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1-scale model  (log scale) multiscale model (log scale) 

residual (linear scale) residual (linear scale) 
  30 iterations 
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1-scale model  (log scale) multiscale model (log scale) 

residual (linear scale) residual (linear scale) 
  50 iterations 
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1-scale model  (log scale) multiscale model (log scale) 

residual (linear scale) residual (linear scale) 
  70 iterations 



83 

1-scale model  (log scale) multiscale model (log scale) 

residual (linear scale) residual (linear scale) 
 100 iterations 
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1-scale model  (log scale) multiscale model (log scale) 

residual (linear scale) residual (linear scale) 
 150 iterations 



multiscale clean 
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multiscale “classic” 1-scale 



86 

Miscellaneous 
•  clean will restart from existing files 

–  will first recompute residuals from model 
–  be sure this is what you want 

•  mask image in particular can be reused but be careful of imsize  

•  total cleaned flux not reported until end 
•  log messages differ between algorithms (work in progress) 

•  don’t do ^C while imaging – can do bad things to your MS 

•  calready = True required to initialize the MS model column for self-cal 



Combining with other data 
Single dish or interferometric 
If you have only images: 

 feather 
If you have an image and a MS: 

 use image as modelimage in clean    (or feather) 
If you have two+ MS:  

 concat and deconvolve together      (or modelimage or feather) 
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Combining with other data: feather 
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Combining with other data: modelimage 
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Combining with other data: concat&clean 
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Theoretically, weights should be scaled by variance, e.g.  (7m/12m)2(6/32) 
ms tool:  ms.getdata[“weight”], ms.putdata 
better: use AnalysisUtils 



Image Analysis 
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Analysis and Noise: 
•  photometry should be done with caution 

–  CLEAN does not conserve flux (extrapolates) 
–  extended structure missed, attenuated, distorted 
–  phase errors (e.g. seeing) can spread signal around  

•  point source sensitivity: straightforward 
–  telescope area, bandwidth, integration time, weighting  
–  in image, modify noise by primary beam response 

•  extended source sensitivity: problematic 
–  not quite right to divide noise by √n beams covered by source:  

smoothing = tapering, omitting data → lower limit 
–  Interferometers always missing flux at some spatial scale 

•  be careful with low signal-to-noise images 
–  if position known, 3σ OK for point source detection 
–  if position unknown, then 5σ required (flux biased by ~1σ) 
–  if < 6σ, cannot measure the source size 
–  spectral lines may have unknown position, velocity, width 



•  “dynamic range” 
–  ratio of peak brightness to rms noise in a region  

 devoid of emission (common in astronomy) 
–  an easy to calculate lower limit to the error in                                 

brightness in a non-empty region 

•  “fidelity” 
–  difference between any produced image and the correct image 
–  a convenient measure of how accurately it is possible to make an image that 

reproduces the brightness distribution on the sky 
–  need a priori knowledge of correct image to calculate 

–  fidelity image = input model / difference                                                                   
                          = model     beam  / abs( model     beam – reconstruction ) 
–  fidelity is the inverse of the relative error 
–  in practice, lowest values of difference need to be truncated 

Measures of Image Quality 



Measures of Image Quality 

•  ALMA Level 1 Science Goal #3 
–  ALMA will have: The ability to provide precise images at an angular resolution of 0.1".  

Here the term precise image means accurately representing the sky brightness at all 
points where the brightness is greater than 0.1% of the peak /image brightness. 

ALMA Memo #387 
Pety et al. 



Image analysis:  
casaviewer 

95 

Set three mouse buttons to 
different actions, e.g. zoom,  
                           statistics 



Image analysis:  
casaviewer 
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draw with R button, then double R-click 

(ESC to remove) 

back in your terminal: 



Image analysis:  
casaviewer 
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save the current state (images 
loaded, scale, zoom, etc) 

Print or save image to file 

zoom to entire image, in/out 

Play channels as movie or select one 

stats at cursor posn, all loaded images 
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Image analysis:  
casaviewer 

99 

subpanels can be removed 
(and redocked) 



Image analysis:  
casaviewer 

100 



Image analysis:  
casaviewer 

101 

spectral profile tool 



Image analysis: immoments 
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Set relatively high 
threshold for higher 
moments e.g. 6σ 
measured in the line-peak 
channel with the viewer 



Image analysis: immoments 
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resources 
Interferometry 

 Virtual Radio Interferometer http://www.narrabri.atnf.csiro.au/astronomy/vri.html 
 NRAO synthesis school lectures http://www.aoc.nrao.edu/events/synthesis/2010/ 
 IRAM lectures http://www.iram-institute.org/EN/content-page-204-7-67-202-204-0.html 

CASA 
 casa.nrao.edu 
 casaguides.nrao.edu 
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