

Imaging with CASA

Philippe Salomé LERMA, Observatoire de Paris

Credits: (Jérôme Pety, Frédéric Gueth, Crystal Brogan)

Imaging Principles

 V_{ij} (b_{ij}) = 2D FT{Bprimary.Isource} (b_{ij}) +Noise

- Irregular, limited sampling function:
- -S(u, v) = 1 at (u, v) points where visibilities are measured
- -S(u, v) = 0 elsewhere
- Bdirty = 2D FT-1 {S}
- Imeas = 2D FT-1 {S.V } \rightarrow 1) Gridding + FFT to get I_{meas}

Fourier Transform Property #1:

Imeas = Bdirty * {Bprimary.Isource} \rightarrow 2) Deconvolution to get I_{source}

Bdirty: Point Spread Function (PSF) of the interferometer (i.e. if the source is a point, then Imeas = Itot.Bdirty).

• From uv-plane to image plane \rightarrow build a dirty image

Imaging Principles clean

• From dirty image to clean image (replace the dirty psf by a cleaned one : without sidelobs)

• Use the clean() task to both the image and the clean

• To build the dirty image do niter=0 (see later)

> inp(cle	ean)			
# clean :: Invert	and	deconvolve ima	ges wi	ith selected algorithm
vis		'ngc5921.demo.m	s' #	Name of input visibility file
imagename		'ngc5921.demo.c.	leanir	ng' # Pre-name of output images
outlierfile			#	Text file with image names, sizes, centers for outliers
field		'0'	#	Field Name or id
spw	=		#	Spectral windows e.g. '0~3', '' is all
selectdata	=	True	#	Other data selection parameters
timerange	=	1.1	#	Range of time to select from data
uvrange			#	Select data within uvrange
antenna			#	Select data based on antenna/baseline
scan			#	Scan number range
mode	=	'channel'	#	Spectral gridding type (mfs, channel, velocity, frequency)
nchan	=	46	#	Number of channels (planes) in output image; -1 = all
start		5	#	Begin the output cube at the frequency of this channel in the MS
width		1	#	Width of output channel relative to MS channel (# to average)
interpolation		'nearest'	#	Spectral interpolation (nearest, linear, cubic)
outframe			#	velocity frame of output image
gridmode	=		#	Gridding kernel for FFT-based transforms, default='' None
niter	=	6000	#	Maximum number of iterations
gain		0.1	#	Loop gain for cleaning
threshold		8.0	#	Flux level to stop cleaning, must include units: '1.0mJy'
psfmode		'clark'	#	Method of PSF calculation to use during minor cycles
imagermode	=		#	Options: 'csclean' or 'mosaic', '', uses psfmode
multiscale	-	[]	#	Deconvolution scales (pixels); [] = standard clean
interactive	-	False	#	Use interactive clean (with GUI viewer)
mask	=	[108, 108, 148,	148]	<pre># Cleanbox(es), mask image(s), and/or mask region(s)</pre>
imsize		[256, 256]	#	x and y image size in pixels. Single value: same for both
cell		[15.0, 15.0]	#	x & y cell size(s). Default unit arcsec.
phasecenter			#	Image center: direction or field index
restfreq			#	Rest frequency to assign to image (see help)
stokes		'Ι'	#	Stokes params to image (eg I,IV, QU,IQUV)
weighting	=	'briggs'	#	Weighting of uv (natural, uniform, briggs,)
robust	=	0.5	#	Briggs robustness parameter
npixels		0	#	number of pixels to determine uv-cell size 0=> field of view
uvtaper	=	False	#	Apply additional uv tapering of visibilities
modelimage	=		#	Name of model image(s) to initialize cleaning
restoringbeam		['']	#	Output Gaussian restoring beam for CLEAN image
pbcor		False	#	Output primary beam-corrected image
minpb		0.2	#	Minimum PB level to use
calready		True	#	True required for self-calibration
async	=	False	#	If true the taskname must be started using clean()

> inp(cle #clean '' Invert	an j and) 1 deconvolve ima	nes wi	ith selected algorithm		
vis	=	'ngc5921.demo.m	900 m. s' #	Name of input visibility file		
imagename	=	'ngc5921.demo.c	leanir	nd' # Pre-name of output images		
outlierfile	_	11	#	Text file with image names, sizes.	centers for outliers	
field	=	· @ ·	#	Field Name or id	concerts for successful	
spw	=		#	Spectral windows e.g. '0~3'. ''	Input / output files	
selectdata	=	True	#	Other data selection parameters	mput / output mes	
timerange	-	1 1	#	Range of time to select from data		
uvrange			#	Select data within uvrange		
antenna			#	Select data based on antenna/basel	Line	
scan			#	Scan number range		
node	=	'channel'	#	Spectral gridding type (mfs, chann	el, velocity, frequency)	
nchan	=	46	#	Number of channels (planes) in out	:put image; -1 = all	
start		5	#	Begin the output cube at the frequ	ency of this channel in the MS	
width		1	#	Width of output channel relative t	o MS channel (# to average)	
interpolation		'nearest'	#	Spectral interpolation (nearest, 1	linear, cubic)	
outframe			#	velocity frame of output image		
gridmode	=		#	Gridding kernel for FFT-based tran	sforms, default='' None	
niter	=	6000	#	Maximum number of iterations		
gain		0.1	#	Loop gain for cleaning		
threshold		8.0	#	Flux level to stop cleaning, must	include units: '1.0mJy'	
psfmode	=	'clark'	#	Method of PSF calculation to use o	during minor cycles	
imagermode	=		#	Options: 'csclean' or 'mosaic', ''	, uses psfmode	
multiscale	=	[]	#	Deconvolution scales (pixels); []	= standard clean	
interactive	=	False	#	Use interactive clean (with GUI vi	Lewer)	
mask		[108, 108, 148,	148]	<pre># Cleanbox(es), mask image(s), ar</pre>	nd/or mask region(s)	
imsize		[256, 256]	#	x and y image size in pixels. Sing	gle value: same for both	
cell		[15.0, 15.0]	#	x & y cell size(s). Default unit a	arcsec.	
phasecenter			#	Image center: direction or field i	Index	
restfreq			#	Rest frequency to assign to image	(see help)	
stokes	=	'1'	#	Stokes params to image (eg I,IV, ((U, IQUV)	
weighting	=	'briggs'	#	Weighting of uv (natural, uniform,	briggs,)	
robust		0.5	#	Briggs robustness parameter		
npixels		Θ	#	number of pixels to determine uv-o	cell size 0=> field of view	
uvtaper	=	False	#	Apply additional uv tapering of vi	isibilities	
modelimage			#	Name of model image(s) to initiali	ize cleaning	
restoringbeam		['']	#	Output Gaussian restoring beam for	CLEAN image	
pbcor		False	#	Output primary beam-corrected imag	je –	
minpb		0.2	#	Minimum PB level to use		
calready		True	#	True required for self-calibration	1	
async	=	False	#	If true the taskname must be start	ed using clean()	

Spatial Parameters

- Field, scan, antenna, uvrange

Spectral Parameters

- Start with selection parameters

Select a spectral window and some channels with the spw parameter <u>spw</u>='0:0~10,1:20~30,2:1;2;3'

- How do I define the final spectral resolution ?

<u>Mode</u>: mfs (continuum), channel or velocity (emission line: nchan, start, width ...)

> inp(cl	ean)			
# clean :: Invert	and	deconvolve imag	ges wi	ith selected algorithm
vis		'ngc5921.demo.m	s' #	Name of input
imagename		'ngc5921.demo.c.	leanim	^{ng'} # Pre-name Spatial and Spectral selections
outlierfile	=	1.1	#	Text file with
field		' O '	#	Field Name or id
spw	=		#	Spectral windows e.g. '0~3', '' is all
selectdata	=	True	#	Other data selection parameters
timerange	=	1.1	#	Range of time to select from data
uvrange			#	Select data within uvrange
antenna			#	Select data based on antenna/baseline
scan			#	Scan number range
node	=	'channel'	#	Spectral gridding type (mfs, channel, velocity, frequency)
nchan	=	46	#	Number of channels (planes) in output image; -1 = all
start		5	#	Begin the output cube at the frequency of this channel in the MS
width		1	#	Width of output channel relative to MS channel (# to average)
interpolation		'nearest'	#	Spectral interpolation (nearest, linear, cubic)
outframe			#	velocity frame of output image
				··
aridmode	-		#	Gridding kernel for FFT-based transforms, default='' None
niter	=	6000	#	Maximum number of iterations
gain		0.1	#	Loop gain for cleaning
threshold		8.0	#	Flux level to stop cleaning, must include units: '1.0mJv'
psfmode		'clark'	#	Method of PSF calculation to use during minor cycles
imagermode	=		#	Options: 'csclean' or 'mosaic', '', uses psfmode
multiscale	_	[]	#	Deconvolution scales (pixels): [] = standard clean
interactive	-	False	#	Use interactive clean (with GUI viewer)
mask		F108, 108, 148,	1481	<pre># Cleanbox(es), mask image(s), and/or mask region(s)</pre>
imsize	=	[256, 256]	#	x and y image size in pixels. Single value: same for both
cell		[15.0. 15.0]	#	x & v cell size(s). Default unit arcsec.
phasecenter			#	Image center: direction or field index
restfreg			#	Rest frequency to assign to image (see help)
stokes	=	'I'	#	Stokes params to image (eg I.IV. OU.IOUV)
weighting	=	'briggs'	#	Weighting of uv (natural, uniform, briggs,)
robust	_	0.5	#	Briggs robustness parameter
npixels		0	#	number of pixels to determine uv-cell size Q=> field of view
прихоно		0		
uvtaner	-	False	#	Apply additional uv tapering of visibilities
modelimade	_	11	#	Name of model image(s) to initialize cleaning
restoringbeam	=	ריין	#	Output Gaussian restoring beam for CLEAN image
phoor	_	False	#	Output primary beam-corrected image
minnh	_	0.2	#	Minimum PR level to use
calready	_	True	#	True required for self-calibration
async	_	Falso	#	If true the taskname must be started using clean()
asyno		14130	77	The cho cho castialle lide be scarted asting escan()

Spatial Parameters (grid, fft)

- Start with selection parameters

Select a *field* (calibrator, target) and the *stoke* parameter (I,IV, QU,IQUV) you want to image

- What should be the cell size (sampling) ?

<u>Cell</u>: Between 1/3 and 1/5 of the synthesized beam to ease deconvolution

- What should be the map size ?

<u>Imsize</u>: At least twice the primary beam size or more and avoid bright sources near the edge of the image that would cause aliasing

> inp(cle	ean)			
# clean :: Invert	and	deconvolve imad	ges wi	ith selected algorithm
vis		'ngc5921.demo.ms	s' #	Name of input visibility file
imagename		'ngc5921.demo.cl	leanir	ng' # Pre-name of output images
outlierfile			#	Text file with image names, sizes, centers for outliers
field		' O '	#	Field Name or id
spw	=		#	Spectral windows e.g. '0~3', '' is all
selectdata	=	True	#	Other data selection parameters
timerange	=	1.1	#	Range of time to select from data
uvrange			#	Select data within uvrange
antenna			#	Select data based on antenna/baseline
scan			#	Scan number range
node	=	'channel'	#	Spectral gridding type (mfs, channel, velocity, frequency)
nchan	-	46	#	Number of channels (planes) in output image; -1 = all
start		5	#	Begin the output cube at the frequency of this channel in the MS
width		1	#	Width of output channel relative to MS channel (# to average)
interpolation		'nearest'	#	Spectral interpolation (nearest, linear, cubic)
outframe			#	velocity frame of output image
gridmode	=		#	Gridding kernel for FFT-based transforms, default='' None
niter	=	6000	#	Maximum number of iterations
gain		0.1	#	Loop gain for cleaning
threshold		8.0	#	Flux level to stop cleaning, must include units: '1.0mJy'
psfmode		'clark'	#	Method of PSF calculation to use during minor cycles
imagermode	=		#	Options: 'csclean' or 'mosaic', '', uses pefrede
multiscale		[]	#	Deconvolution scales (pixels); [] = Monping porprotore
interactive	-	False	#	Use interactive clean (with GUI vie IVIdPPIIIg PdIdIIIeters
mask		[108, 108, 148,	148]	# Cleanbox(es), mask image(s), and
imsize		[256, 256]	#	x and y image size in pixels. Single value: same for both
cell		[15.0, 15.0]	#	x & y cell size(s). Default unit arcsec.
phasecenter			#	Image center: direction or field index
restfreq			#	Rest frequency to assign to image (see help)
stokes		'Ι'	#	Stokes params to image (eg I,IV, QU,IQUV)
weighting	=	'briggs'	#	Weighting of uv (natural, uniform, briggs,)
robust	=	0.5	#	Briggs robustness parameter
npixels		0	#	number of pixels to determine uv-cell size 0=> field of view
uvtaper	=	False	#	Apply additional uv tapering of visibilities
modelimage	=		#	Name of model image(s) to initialize cleaning
restoringbeam		['']	#	Output Gaussian restoring beam for CLEAN image
pbcor		False	#	Output primary beam-corrected image
minpb		0.2	#	Minimum PB level to use
calready		True	#	True required for self-calibration
async	=	False	#	If true the taskname must be started using clean()

Cleaning methods

<u>psfmode</u> – algorithm used to calculate the point spread function (psf). Hogbom is robsut but slow. Clark is fast but unstable (when high sidelobes)

<u>Imagermode</u> 'csclean' – similar to 'clark' should be used for high dynamic range and is always used for mosaics. Better accuracy but slow (cf mx in gildas)

Polarization

'hogbom' currently only way to clean I, Q, U, & V independently. For polarization imaging 'clark' searches for peak in I2+V2+Q2+U2

When do I stop cleaning ?

Stop cleaning when the residuals are noise like, and/or the clean has stopped converging (adding to cleaned flux)!

<u>niter</u> – Number of clean iterations to do. This can be useful when you are doing tests, but this parameter has NO physical meaning. Instead set to large number and let either threshold or do interactive to stop the cleaning. <u>threshold</u> – Stop cleaning when peak residual has this value, give units (i.e. mJy).

<u>threshold</u> – Stop cleaning when peak residual has this value, give units (i.e. mJy). One would like to approach about 3x the theoretical rms noise.

Note:

- To reach this limit the data must be well calibrated/flagged and suffer from no serious artifacts (resolved out extended structure/negative bowls, poor psf/uvcoverage, dynamic range limited etc).
- Do not set this blindly! Once you reach rms (whether close to theoretical or not), you are just picking noise up one place and putting it down in another

> inp(cle	ean))		
# clean :: Invert	and	deconvolve ima	ges wi	ith selected algorithm
vis		'ngc5921.demo.m	s' #	Name of input visibility file
imagename		'ngc5921.demo.c.	leanir	ng' # Pre-name of output images
outlierfile			#	Text file with image names, sizes, centers for outliers
field		'0'	#	Field Name or id
spw	=		#	Spectral windows e.g. '0~3', '' is all
selectdata		True	#	Other data selection parameters
timerange	=	11	#	Range of time to select from data
uvrange			#	Select data within uvrange
antenna			#	Select data based on antenna/baseline
scan			#	Scan number range
mode	=	'channel'	#	Spectral gridding type (mfs, channel, velocity, frequency)
nchan	=	46	#	Number of channels (planes) in output image; -1 = all
start		5	#	Begin the output cube at the frequency of this channel in the MS
width		1	#	Width of output channel relative to MS channel (# to average)
interpolation		'nearest'	#	Spectral interpolation (nearest, l <u>inear, cubic)</u>
outframe			#	velocity frame of output image
				Cleaning parameters
gridmode	=	11	#	Gridding kernel for FFT-based transforms, default none
niter	=	6000	#	Maximum number of iterations
gain		0.1	#	Loop gain for cleaning
threshold		8.0	#	Flux level to stop cleaning, must include units: '1.0mJy'
psfmode	=	'clark'	#	Method of PSF calculation to use during minor cycles
imagermode	-		#	Options: 'csclean' or 'mosaic', '', uses psfmode
multiscale	-	[]	#	Deconvolution scales (pixels); [] = standard clean
interactive	=	False	#	Use interactive clean (with GUI viewer)
mask		[108, 108, 148,	148]	# Cleanbox(es), mask image(s), and/or mask region(s)
imsize	=	[256, 256]	#	x and y image size in pixels. Single value: same for both
cell		[15.0, 15.0]	#	x & y cell size(s). Default unit arcsec.
phasecenter			#	Image center: direction or field index
restfreq			#	Rest frequency to assign to image (see help)
stokes	=	<u>'I'</u>	#	Stokes params to image (eg I,IV, QU,IQUV)
weighting	-	'briggs'	#	Weighting of uv (natural, uniform, briggs,)
robust		0.5	#	Briggs robustness parameter
npixels		0	#	number of pixels to determine uv-cell size O=> field of view
uvtaper	=	False	#	Apply additional uv tapering of visibilities
modelimage			#	Name of model image(s) to initialize cleaning
restoringbeam		['']	#	Output Gaussian restoring beam for CLEAN image
pbcor		False	#	Output primary beam-corrected image
minpb		0.2	#	Minimum PB level to use
calready		True	#	True required for self-calibration
async	=	False	#	If true the taskname must be started using clean()

Imaging Clean Image

Interactive Cleaning

# clean :: Invert	and	, d deconvolve ima	des wi	ith selected algorithm
vis		'ngc5921.demo.m	s' #	Name of input visibility file
imagename		'ngc5921.demo.c.	leanir	mg' # Pre-name of output images
outlierfile			#	Text file with image names, sizes, centers for outliers
field		'0'	#	Field Name or id
spw	=		#	Spectral windows e.g. '0~3', '' is all
selectdata	=	True	#	Other data selection parameters
timerange		1.1	#	Range of time to select from data
uvrange			#	Select data within uvrange
antenna			#	Select data based on antenna/baseline
scan			#	Scan number range
node	=	'channel'	#	Spectral gridding type (mfs, channel, velocity, frequency)
nchan	=	46	#	Number of channels (planes) in output image; -1 = all
start		5	#	Begin the output cube at the frequency of this channel in the MS
width		1	#	Width of output channel relative to MS channel (# to average)
interpolation		'nearest'	#	Spectral interpolation (nearest, linear, cubic)
outframe			#	velocity frame of output image
gridmode	=		#	Gridding kernel for FFT-based transforms, default='' None
niter		6000	#	Maximum number of iterations
gain		0.1	#	Loop gain for cleaning
threshold		8.0	#	Flux level to stop cleaning, must include units: '1 Gmlv'
psfmode		'clark'	#	Method of PSF calculation to use due Interactive Cleaning
imagermode	=		#	Options: 'csclean' or 'mosaic', '', IIIIeractive Cleaning
multiscale		[]	#	Deconvolution scales (pixels); [] = scandard crean
interactive	=	False	#	Use interactive clean (with GUI viewer)
mask	=	[108, 108, 148,	148]	# Cleanbox(es), mask image(s), and/or mask region(s)
imsize		[256, 256]	#	x and y image size in pixels. Single value: same for both
cell		[15.0, 15.0]	#	x & y cell size(s). Default unit arcsec.
phasecenter			#	Image center: direction or field index
restfreq			#	Rest frequency to assign to image (see help)
stokes	=	'I'	#	Stokes params to image (eg I,IV, QU,IQUV)
weighting	=	'briggs'	#	Weighting of uv (natural, uniform, briggs,)
robust		0.5	#	Briggs robustness parameter
npixels		Θ	#	number of pixels to determine uv-cell size O=> field of view
uvtaper	=	False	#	Apply additional uv tapering of visibilities
modelimage	=		#	Name of model image(s) to initialize cleaning
restoringbeam		['']	#	Output Gaussian restoring beam for CLEAN image
pbcor		False	#	Output primary beam-corrected image
minpb		0.2	#	Minimum PB level to use
calready		True	#	True required for self-calibration
async	=	False	#	If true the taskname must be started using clean()

Imaging Weighting

- *natura*l lowest noise, poorest resolution, default
- <u>uniform</u> highest noise, best resolution
- *briggs* intermediate between natural and uniform

- Default robust=0.0 is often a good choice, range -2 to 2, positive more towards natural, negative, more towards uniform

- npixel number of pixels to determine uv-cell size, default 0 = imsize

Imaging Weighting

Imaging UV-range

- An image can be dramatically changed by narrowing uvrange or applying outer uv-taper
- uvtaper=True
 - outertaper default unit is meters
 - outertaper=['120arcsec']
 - outertaper=['5klambda','3klambda','45.0deg']
 - outertaper (klambda) / 200 = outertaper (arcsec) : 5klambda \rightarrow 25 arcsec
 - Innertaper not yet implemented

Imaging UV-range

> inp(cle	ean))		
# clean :: Invert	and	deconvolve ima	qes wi	ith selected algorithm
vis		'ngc5921.demo.m	s' #	Name of input visibility file
imagename		'ngc5921.demo.c	leanin	ng' # Pre-name of output images
outlierfile			#	Text file with image names, sizes, centers for outliers
field		'0'	#	Field Name or id
spw	=		#	Spectral windows e.g. '0~3', '' is all
selectdata	=	True	#	Other data selection parameters
timerange	=	1.1	#	Range of time to select from data
uvrange			#	Select data within uvrange
antenna			#	Select data based on antenna/baseline
scan			#	Scan number range
node	=	'channel'	#	Spectral gridding type (mfs, channel, velocity, frequency)
nchan	-	46	#	Number of channels (planes) in output image: -1 = all
start		5	#	Begin the output cube at the frequency of this channel in the MS
width		1	#	Width of output channel relative to MS channel (# to average)
interpolation		'nearest'	#	Spectral interpolation (nearest, linear, cubic)
outframe			#	velocity frame of output image
aridmodo	_		#	Gridding kernel for EET-based transforms_default-'' None
niter		6000	#	Maximum number of iterations
nain	_	0 1	#	Loop gain for cleaning
threshold	=	8.0	#	Flux level to stop cleaning, must include units: '1.0mJv'
psfmode	=	'clark'	#	Method of PSE calculation to use during minor cycles
imagermode	=	11	#	Options: 'csclean' or 'mosaic', '', uses psfmode
multiscale	-	[]	#	Deconvolution scales (pixels): [] = standard clean
interactive	_	False	#	Use interactive clean (with GUI viewer)
mask		[108, 108, 148,	1481	<pre># Cleanbox(es), mask image(s), and/or mask region(s)</pre>
imsize		[256, 256]	#	x and v image size in pixels. Single value: same for both
cell		[15.0, 15.0]	#	x & v cell size(s). Default unit arcsec.
phasecenter			#	Image center: direction or field in
restfreg			#	Rest frequency to assign to image Weighting parameters
stokes	=	'I'	#	Stokes params to image (eg I, IV, 0
weighting	=	'briggs'	#	Weighting of uv (natural, uniform, briggs,)
robust	=	0.5	#	Briggs robustness parameter
npixels		Θ	#	number of pixels to determine uv-cell size O=> field of view
uvtaper	=	False	#	Apply additional uv tapering of visibilities
modelimage		11	#	Name of model image(s) to initialize cleaning
restoringbeam	=	['']	#	Output Gaussian restoring beam for CLEAN image
pbcor		False	#	Output primary beam-corrected image
minpb		0.2	#	Minimum PB level to use
calready		True	#	True required for self-calibration
async	=	False	#	If true the taskname must be started using clean()

٦.

Imaging Output files

Based on the imagename these files are created:

imagename.image - final cleaned (or dirty if niter=0 image)
imagename.psf - the point spread function of the beam, useful to
check whether image artifacts are due to poor psf

imagename.model – an image of the clean components imagename.residual – the residual image after subtracting clean components, useful to check if more cleaning is needed imagename.flux – the primary beam response function – used to make a "flux correct image", otherwise flux is only correct at the phase center(s). pbcor=T divides the .image by the .flux. Such images don't look pretty because the noise at the edges are also increased, but flux densities should ONLY be calculated from pbcor'ed images.

Based on the imagename these files are created:

imagename.image - final cleaned (or dirty if niter=0 image)
imagename.psf - the point spread function of the beam, useful to
check whether image artifacts are due to poor psf

Use the viewer() to see raster maps, contours...

center(s). pbcor=T divides the .image by the .flux. Such images don't look pretty because the noise at the edges are also increased, but flux densities should ONLY be calculated from pbcor'ed images.

Imaging Analysis

- task **imhead** get and change image header information
- task immoments computes moment images of spectral cube
- task **imstat** return statistics on regions of image
- task **imval** return values for pixel or region of image
- task **imfit** fit a 2D Gaussian to the image

Imaging Immoments

ImMoments				
<pre># immoments ::</pre>	Compute mo	oments from	an ima	lge
imagename	= 'ngo	:5921.demo.	cleanim	ng.image' # Name of the input image
moments		[0, 1]	#	List of moments you would like to compute
axis	= 'spe	ectral'	#	The momement axis: ra, dec, lat, long, spectral, or stokes
region			#	Image Region. Use viewer
box			#	Select one or more box regions
chans			#	Select the channel(spectral) range
stokes			#	Stokes params to image (I,IV,IQU,IQUV)
mask			#	mask used for selecting the area of the image to calculate the moments on
includepix		-1	#	Range of pixel values to include
excludepix	= [-10	0.0, 0.008	99999999	0999999993] # Range of pixel values to exclude
outfile	= 'ngo	:5921.demo.	moments	s' # Output image file name (or root for multiple moments)
async	=	False	#	If true the taskname must be started using immoments()

Large scale imaging (mosaic)

Widefield() or clean() with imagermode='mosaic'

Specific methods for ftt, weighting and cleaning of the different pointings observed that will make the full final image

Zero/short spacing (extended emission)

feather() – combine a single dish and interferometric image in the image-plane. If there is is good overlap in the UV-plane, and the relative calibration between the two is accurate this should work pretty well

More ...

Exercices

Go back through the ngc5921_demo.py script

References

- NRAO Lectures

http://www.cv.nrao.edu/course/astr534/ERA.shtml

- IRAM schools (2010 Oct. 4th -8th , Grenoble, France) http://www.iram.fr/IRAMFR/IS/school.htm

The end !

Imaging Principles

From visibilities to images

 $I_{meas} = B_{dity} * (B_{pim} \times I_{sare}) + N$

- Inty Map
- B_{drty}: Dirty Beam
- B_{pim}: Primary Beam
- I_{same} : Sky brightness distribution

N: Noise