

Calibration with CASA

Philippe Salomé LERMA, Observatoire de Paris

Credits:

(Frédéric Gueth, George Moellenbrock, Wouter Vlemmings)

Calibration On-line

Source of possible problems that may need flagging if not done automatically

- Real-time calibrations:
 - _ Atmospheric absorption (hot/cold measurements)
 - The data are already in correct K scale
 - Atmospheric phase fluctuations (WVR)

TelCal software (pointing focus, delays...)

 It will be possible to re-do some of these calibrations off-line but this should be reserved to special cases

Offline Calibration : your job

- Two main Calibrations for ALMA:
 - Freq.-dependent response of the system **bandpass**
 - Time-dependent response of the system gaincal
- Absolute flux scale must also be calibrated → fluxscale

Calibration principles - on sky

- The whole calibration relies on models = sources with known structure / spectra
- In practice: continuum **point sources = quasars**
- Strong source is used to calibrate bandpass
- Nearby source regularly observed is used to calibrate gain temporal dependence
- Standard observing mode includes these observations
- Taking into account source structure/spectra is also possible: more complex models

Calibration principles - reduction

- 1. Select the appropriate data (field, spw, time,...)
- 2. Possibly apply existing calibration
- 3. Solve for calibration (bandpass, gaincal)
- 4. The calibration result is stored in a **new MS**
- 5. Go to 1. for next calibration
- Apply calibration to science targets (= apply calibration MS to target MS)
 - transfer among spectral windows
 - transfer among time = interpolation

Data Calibration Steps

Millemeter Interferometers

- **Bandpass** (amplitude and Phase vs frequency) CASA: bandcal()
- Phase vs time CASA: gaincal()
- **Flux** scale

CASA: setjy(), fluxscale()

• **Amplitude** vs time

CASA: gaincal()

Bandpass Problems

Frequency dependence of the interferometer response arises from :

- Receivers intrinsic response
- Delay offsets (slope on phase)
- Cables attenuation
- Antenna chromatism
- Atmospheric lines (O2...)
- •

Bandpass Method

A strong quasar is observed at the beginning of each project

- Phase vs frequency should be zero (point source)
- Amplitude vs frequency should be constant (continuum source)

Potential problem : spectral index of quasars over large bandwidth

Bandpass Method in practice

- Time average over one scan (to improve SNR)
- Time average over several scans (then need a phase calibration first of these scans)
- Solve for antenna based gains
- Fit amplitude and phase vs frequency (polynoms)
- Assume bandpass is constant with time
- Must be recalibrated if receiver is retuned

bandpass()

bandpass :: Calculates a bandpass calibration solution

vis	=	'ngc5921.demo.	ns' #	Nome of input visibility file
caltable	=	'ngc5921.demo.	bcal'	# Name of output gain calibration
			#	table
field	=	' O '	#	Select field using field id(s) or
			#	field name(s)
spw	=	1.1	#	Select spectral window/channels
selectdata	=	False	#	Other data selection parameters
solint	=	'inf'	#	Solution interval
combine	=	'scan'	#	Data axes which to combine for solve
			#	(scan, spw, and/or field)
refant	=	'15'	#	Reference antenna name
minblperant	=	4	#	Minimum baselines _per antenna_
			#	required for solve
solnorm	=	False	#	Normalize average solution amplitudes # to 1.0 (G, T only)

bandpass()

bandtype	=	'B'
fillgap)s =	0
append	=	False
gaintable	=	0.0
gainfield	=	
interp	=	
spwmap	=	[]
gaincurve	=	False
opacity parang async	= = =	0.0 False False

#	Type of bandpass solution (B or
#	BPOLY)
#	Fill flagged solution channels by
#	interpolation
#	Append solutions to the (existing)
#	table
#	Gain calibration table(s) to apply on # the fly
#	Select a subset of calibrators from
#	gaintable(s)
#	Interpolation mode (in time) to use
#	for each gaintable
#	<pre>Spectral windows combinations to form</pre>
#	Apply internal VLA antenna gain curve # correction
#	Opacity correction to apply (nepers)
#	Apply parallactic angle correction
#	If true the taskname must be started
#	using bandpass()

plotcal()

overplot	=	False
clearpanel	=	'Auto'
iteration	=	
plotrange	=	[]
showflags plotsymbol	=	False 'o'
plotcolor	=	'blue'
markersize	=	5.0
fontsize	=	10.0
showgui	=	True
figfile	=	11
async	=	False

#	Overplot solutions on existing
#	display
#	Specify if old plots are cleared or
#	not
#	Iterate plots on
#	antenna,time,spw,field
#	plot axes ranges:
#	[xmin,xmax,ymin,ymax]
#	If true, show flagged solutions
#	pylab plot symbol
#	initial plotting color
#	Size of plotted marks
#	Font size for labels
#	Show plot on gui
#	''= no plot hardcopy, otherwise
#	supply name
#	If true the taskname must be started
#	using plotcal()

Gaincal - Phase Problems

Short-term time variation of the phase caused by the atmosphere (< 1min : real time correction by water radiometer), 1min-1h not corrected but if fast switching)

Long-term time variation

- Antenna position error (period 24h)
- Atmosphere (up to 1h) offline calibration (gaincal)
- Antenna/electronics drifts

A point source (quasar) is observed every ~20min

- Phase should be zero (point source)
- Solve for antenna-based gains
- Fit as a function of time (spline)
- Better: use of two calibrators
- Use previous calibration (bandpass)

time

Astrophysical target is observed between the calibrators

gaincal determines one solution for each measurement

time

This assumes

time

- excellent SNR for each point
- no atmospheric phase

time

Low SNR case = millimeter case: each point has an error bar (thermal noise)

Phase is sampled at intervals Tc \rightarrow fit is sensitive to errors due to the presence of the fast component (<2Tc), which can be large

A solution going exactly through all points includes short-timescale noise aliased into the slow component

gaincal()

# gaincal :: Determine temporal gains from calibrator observations					
vis	=	'ngc5921.demo	.ms' #	Nome of input visibility file	
caltable	=	'ngc5921.demo	.gcal'	# Name of output gain calibration	
			#	table	
field	=	'0,1'	#	Select field using field id(s) or	
			#	field name(s)	
spw	=	'0:6~56'	#	Select spectral window/channels	
selectdata	. =	False	#	Other data selection parameters	
SOLINT	=	'inf'	#	Solution interval (see help)	
combine	=		#	Data axes which to combine for solve	
			#	(scan, spw, and/or field)	
preavg	=	-1.0	#	Pre-averaging interval (sec)	
refant	=	'15'	#	Reference antenna name	
minblperar	nt =	4	#	Minimum baselines _per antenna_	
			#	required for solve	
minsnr	=	1.0	#	Reject solutions below this SNR	
solnorm	=	False	#	Normalize average solution amplitudes	
				# to 1.0 (G, ⊤ on⊥y)	

fluxscale - Flux Problems

- All quasars have varying fluxes (several 10% in a few months) and spectral indexes – Case of several configuration observations separated by months
- Cannot rely on a priory antenna efficiency to measure their flux (decorrelation...)
- Need to measure known fluxes against monitored Planets, strong, strong quasars...be careful if source are resolved
- **Difficult** part of the calibration

setjy()

# setjy ::	
vis	<pre>= 'ngc5921.demo.ms' # Name of input visibility file (MS)</pre>
field	= '1331+305*' # Field name list or field ids list
spw	= '' # Spectral window identifier (list)
modimage	= '' # File location for field model
fluxdensity	= -1 # Specified flux density [I,Q,U,V]; -1
	# will lookup values
standard	= 'Perley-Taylor 99' # Flux density standard
async	= False # If true the taskname must be started
	<pre># using setjy()</pre>

fluxscale()

# fluxscal	e :: Bootstr	ap the flux	density	scale from standard calibrators
vis	= '	ngc5921.demo	.ms' #	Name of input visibility file (MS)
caltable	= '	ngc5921.demo	.gcal' a	# Name of input calibration table
fluxtable	= '	ngc5921.demo	.fluxsca	ale' # Name of output, flux-scaled
			#	calibration table
reference	=	'1331*'	#	Reference field name(s) (transfer
			#	flux scale FROM)
transfer	=	'1445*'	#	Transfer field name(s) (transfer
flux				# scale
TO), ''	-> all			
append	=	False	#	Append solutions?
refspwmap	=	[-1]	#	Scale across spectral window
			#	boundaries. See help fluxscale
async	=	False	#	If true the taskname must be started
			#	using fluxscale()

Gaincal - Amplitude Problems

Temperature (K) \rightarrow Flux (Jansky)

- Scaling by **antenna efficiency** (Jy/K)
- Not enough for mm-interferometers because
 - Amplitude loss due to decorrelation
 - Variation of the antenna gain (pointing, focus)
- Need amplitude referencing to a point source (quasar) to calibrate the time variation of the antenna efficiency (cf phase calib)

gaincal()

# gaincal :: Determine temporal gains from calibrator observations					
vis	=	'ngc5921.demo	.ms' #	Nome of input visibility file	
caltable	=	'ngc5921.demo	.gcal'	# Name of output gain calibration	
			#	table	
field	=	'0,1'	#	Select field using field id(s) or	
			#	field name(s)	
spw	=	'0:6~56'	#	Select spectral window/channels	
selectdata	. =	False	#	Other data selection parameters	
SOLINT	=	'inf'	#	Solution interval (see help)	
combine	=		#	Data axes which to combine for solve	
			#	(scan, spw, and/or field)	
preavg	=	-1.0	#	Pre-averaging interval (sec)	
refant	=	'15'	#	Reference antenna name	
minblperar	nt =	4	#	Minimum baselines _per antenna_	
			#	required for solve	
minsnr	=	1.0	#	Reject solutions below this SNR	
solnorm	=	False	#	Normalize average solution amplitudes	
				# to 1.0 (G, ⊤ on⊥y)	

gaincal()

_ Use 'a' only here...

gaintype	=	'G'	/ #	Type of	⁼ gain	solutio
			#	GSPLI	NE)	
calmode	=	'ap'	#	Type of	⁼ solut	ion" ('
append	=	False	#	Append	soluti	ons to
			#	table		
gaintable	=	'ngc5921.de	emo.bcal'	# Gain	calibr	ation t
			#	on the	e fly	
gainfield	=	1.1	#	Select	a subs	et of d
			#	gainta	able(s)	
interp	=	'nearest'	#	Interpo	olation	mode (
			#	for ea	ach gai	ntable
spwmap	=	[]	#	Spectra	al wind	ows con
			#	for ga	intabl	es(s)
gaincurve	=	False	#	Apply 1	interna	l VLA a
			# CO	rrection		
opacity	=	0.0	#	Opacity	/ corre	ction t
parang	=	False	#	Apply p	baralla	ctic ar
async	=	False	#	If true	e the t	askname
			#	using	gainca	1()

#	Type of gain solution (G, T, or
#	GSPLINE)
#	Type of solution" ('ap', 'p', 'a')
#	Append solutions to the (existing)
#	table
.bcal'	<pre># Gain calibration table(s) to apply</pre>
#	on the fly
#	Select a subset of calibrators from
#	gaintable(s)
#	Interpolation mode (in time) to use
#	for each gaintable
#	Spectral windows combinations to form
#	for gaintables(s)
#	Apply internal VLA antenna gain curve
# CO	rrection
#	Opacity correction to apply (nepers)
#	Apply parallactic angle correction
#	If true the taskname must be started

plotcal()

# plotcal	:: An all-	purpose plotte	er for	calibration results
caltable	=	'ngc5921.demo.	bcal' a	# Name of input calibration table
xaxis	=	11	#	Value to plot along x axis(time,chan #
,freq,anı # r	enna,amp,p	hase,real,imag	J, SN	
yaxis	=	'phase'	#	Value to plot along y axis
			#	(amp,phase,real,imag,snr,antenna)
poln	=	11	#	Antenna polarization to plot
			#	(RL,R,L,XY,X,Y,/)
field	=	'0'	#	field names or index of calibrators:
			#	''==>all
antenna	=	1.1	#	antenna/baselines: ''==>all, antenna
			#	= '3,VA04'
spw	=	1.1	#	<pre>spectral window:channels: ''==>all,</pre>
			#	spw='1:5~57'
timerange	=		#	time range: ''==>all
subplot	=	212	#	Panel number on display screen (yxn)

Calibration principles - reduction

- 1. Select the appropriate data (field, spw, time,...)
- 2. Possibly apply existing calibration
- 3. Solve for calibration (bandpass, gaincal)
- 4. The calibration result is stored in a **new MS**
- 5. Go to 1. for next calibration

Apply calibration to science targets (= apply calibration MS to target MS)

- transfer among spectral windows
- transfer among time = interpolation

applycal()

<pre># applycal ::</pre>	Apply c	alibrations	s solutior	ns(s) to data
vis	=	'ngc5921.de	emo.ms' #	Nome of input visibility file
field	=	' 0 '	#	Select field using field id(s) or
			#	field name(s)
spw	=	1.1	#	Select spectral window/channels
selectdata	=	False	#	Other data selection parameters
Gaintable	=	['ngc5921.c	lemo.fluxs	<pre>scale', 'ngc5921.demo.bcal'] # Gain ca # libration table(s) to apply on the</pre>
			#	fly
gainfield	=	['0', '*']	#	Select a subset of calibrators from
			#	gaintable(s)
interp	=	['linear',	'nearest'] # Interpolation mode (in time) to
			#	use for each gaintable
spwmap	=	[]	#	Spectral windows combinations to form # for gaintables(s)
gaincurve	=	False	#	Apply internal VLA antenna gain curve # correction
opacity	=	0.0	#	Opacity correction to apply (nepers)
parang	=	False	#	Apply parallactic angle correction
calwt	=	True	#	Calibrate weights along with data for # all relevant calibrations
async	=	False	#	If true the taskname must be started
			#	using applycal()

To summarize...

...open data file... ...select data... bandpass() plotcal () ...select data... gaincal() fluxscale() plotcal () ...select calibration and target... applycal() ... imaging ...

More ...

Exercices

Go through the ngc5921_demo.py script (first part until the clean() task)

References

- NRAO Lectures

http://www.cv.nrao.edu/course/astr534/ERA.shtml

- IRAM schools (2010 Oct. 4th -8th , Grenoble, France) http://www.iram.fr/IRAMFR/IS/school.htm

The end !

Try to plug a more complex calibration scheme: Go thig in any scriptandpass

final gaincal on 1331+305 & 1445+099

ngc4826 script

- Observation: $V_{ds} = GV_{tte} + N$
 - _ V_{tre} = true visibilities = FT(sky)
 - _ V_{ds} = observed visibilities
 - _ Usually, G can be decomposed into antenna-based terms: $G = G_{ij} = G_i$ $x G_j^*$

• Calibration: $V_{arr} = G'^{-1} V_{ds}$

• Observation: $V_{ds} = GV_{tte} + N$

icibilition - ET(cla

V are complex numbers G are matrixes

$V_{ds} = M^{f}MBGDPETF V_{true} + Noise$

- F ionospheric Faraday rotation
- T tropospheric effects
- E collecting area
- D instrumental polarization
- P parallactic angle
- G electronic gain
- B bandpass
- M baseline-based gain
- M^f baseline-based bandpass
- N additive noise (thermal, RFI)

$V_{ds} = M^{f}MBGDPETF V_{true} + Noise$

- F ionospheric Faraday rotation
- T tropospheric effects
- E collecting area
- D instrumental polarization
- P parallactic angle
- G electronic gain
- B bandpass
- M baseline-based gain
- M^f baseline-based bandpass
- N additive noise (thermal, RFI)

Antennabased effects

Baselinebased effects (bad!)

$V_{ds} = M^{f}MBGDPETF V_{true} + Noise$

- F ionospheric Faraday rotation \rightarrow not for ALMA
- T tropospheric effects \rightarrow real-time calibration
- E collecting area \rightarrow included in imaging
- D instrumental polarization \rightarrow polarimetry
- P parallactic angle → polarimetry
- <u>G electronic gain → main calibration for ALMA</u>
- <u>B bandpass → main calibration for ALMA</u>
- M baseline-based gain \rightarrow if strong decorrelation
- M^f baseline-based bandpass → should not happen
- N additive noise (thermal, RFI)

Calibration principles

- Calibration of Vobs = J V
 - Select data so that expected visibilities
 Vmodel are known (eg, point source)
 - Apply already known calibration (eg, gaincal)
 - Solve for J (eg, bandpass) for each antenna
- In general, calibrations do not commute
 - Use orthogonality, timescale, source properties,... to separate

Calibration principles

- In general, calibrations do not commute
 - Use orthogonality, timescale, source properties,... to separate