

CASA – the science data analysis package for ALMA

Dirk Petry (ESO), April 2010

Outline

→ What is CASA?

- main features of CASA

→ Who develops *CASA*?

- development team

→ What are the main requirements and how does CASA meet them?

- design and implementation

→ How does CASA look and feel?

- the CASA user interface

→ CASA status and release plans

CASA main features

- CASA = Common Astronomy Software Applications
- Development started in the 90s as the next generation of AIPS
- Refocussed in 2003 to be the ALMA/EVLA analysis package
- Has the intention to be a general software package to reduce both interferometer and single-dish data
- Internally consists of two parts:

User interface, higher-level analysis routines, viewers = casa non-core

General physical and astronomical utilities, infrastructure = casacore

- Implements the "Measurement Equation" (Hamaker, Bregman & Sault 1996)
- Internal data format is the "Measurement Set" (Kemball & Wieringa 2000)
- 1.5 Million lines of code (mostly C++)
- In public release under GNU Public License since December 2009

CASA – development team

CASA – development team

Since mid 2008, two CASA developers at ESO, since Sept. 2009 three

CASA – development team

Originally only developed at NRAO (Socorro, NM), now

approx. 17 FTE developers are at work at

NRAO Socorro (7)

NRAO Charlottesville (2)

University of Maryland (1)

NAOJ (3)

University of Virginia (0.5)

Observatoire de Paris (0.5)

ESO Garching (3)

- + 1 CASA manager (NRAO Socorro) = Nick Elias
- + 1 Project Scientist (NRAO Socorro) = Jürgen Ott
- + a few 5% FTEs at ASTRON, ATNF, and other places Also involved:

ALMA Computing Managers = B. Glendenning (NRAO), G. Raffi, P. Ballester (ESO)

Overall architecture:

- 1) A data structure
- 2) A set of data import/export facilities
- 3) A set of tools for data access, display, and editing
- 4) A set of tools for science analysis
- 5) A set of high-level analysis procedures ("tasks")
- 6) A programmable command line interface with scripting
- 7) Documentation

Overall architecture:

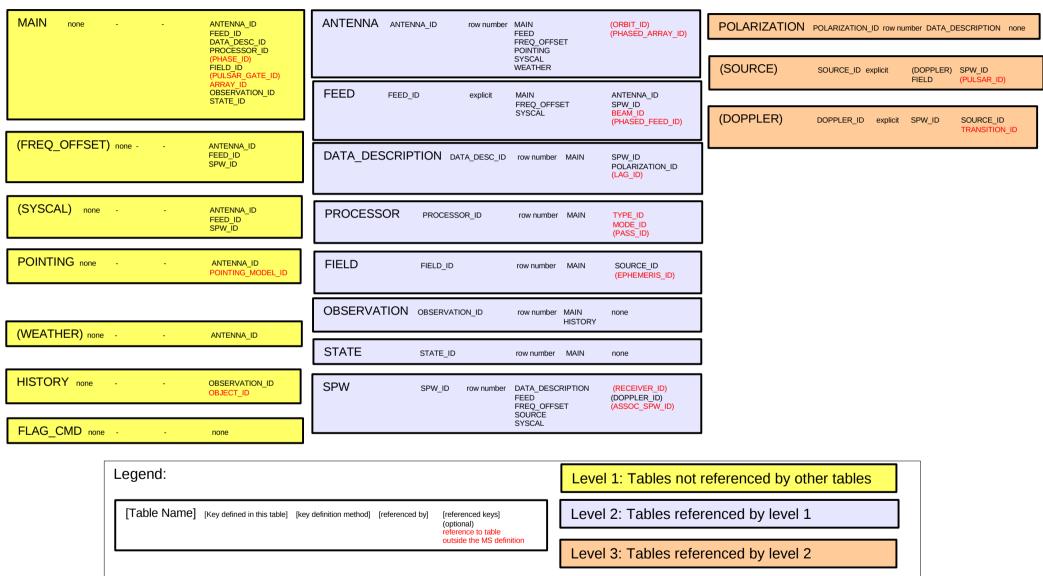
- 1) A data structure
 - Tables: Images, Caltables, and the Measurement Set (MS)
- 2) A set of data import/export facilities the so-called *fillers*: ASDM → MS, FITS → Image, UVFITS → MS, VLA → MS, etc.
- 3) A set of tools for data access, display, and editing tools to load/write data into/from casacore data types, Qt-based table browser, viewer, and (beta) x/y plotter, matplotlib-based x/y plotter
- 4) A set of tools for science analysis

 built around the *Measurement Equation* (developed in 1996) = a set of C++ classes

 for radio astronomical calibration and imaging
- 5) A set of high-level analysis procedures ("tasks") special procedures for each required task such as CLEAN etc.
- 6) A programmable command line interface with scripting *Python* (augmented by *IPython*) gives a MATLAB-like interactive language
- 7) Documentation an extensive cookbook (500 pages) + documentation through help commands (help, ?, pdoc) + online help pages for users and developers

Overall architecture:

- 1) A data structure
- a) Tables: Images, Caltables, and the Measurement Set (MS)
 - 2) A set of data import/export facilities the so-called *fillers*: ASDM → MS, FITS → Image, UVFITS → MS, VLA → MS, etc.
 - 3) A set of tools for data access, display, and editing tools to load/write data into/from casacore data types, Qt-based table browser, viewer, and (beta) x/y plotter, matplotlib-based x/y plotter
 - 4) A set of tools for science analysis
- b)→ built around the *Measurement Equation* (developed in 1996) = a set of C++ classes for radio astronomical calibration and imaging
 - 5) A set of high-level analysis procedures ("tasks") special procedures for each required task such as CLEAN etc.
 - 6) A programmable command line interface with scripting
- c) Python (augmented by IPython) gives a MATLAB-like interactive language
 - 7) Documentation an extensive cookbook (500 pages) + documentation through help commands (help, ?, pdoc) + online help pages for users and developers



CASA special features:

- a) the *Measurement Set* (MS)
 - developed by Cornwell, Kemball, & Wieringa between 1996 and 2000
 - designed to store both interferometry (multi-dish) and single-dish data
 - supports (in principle) any setup of radio telescopes
 - supports description and processing of the data via the Measurement Equation
 - fundamental storage mechanism: *CASA Tables* (inspired by *MIRIAD*)
 - MS = table for radio telescope data (visibilities) + auxiliary sub-tables

The Measurement Set

V1, D.Petry, 13.2.09

Example of a *Measurement Set*

```
$ tree AT352 A071103-K
AT352 A071103-K
                                                              |-- SPECTRAL WINDOW |-- table.fl TSM1
-- ANTENNA
                                            -- POINTING
                        -- FIELD
                                                                                  -- table.f2
    -- table.dat
                                                                  -- table.dat
                                               -- table.dat
                           -- table.dat
                                                                                  -- table.f2 TSM1
    -- table.f0
                                               -- table.f0
                                                                   -- table.f0
                           -- table.f0
                                                                                  -- table.f3
    -- table.info
                                                                  -- table.f0i
                                               -- table.f0i
                           -- table.f0i
                                                                                  -- table.f3 TSM1
    -- table.lock
                                                                  -- table.info
                                               -- table.f1
                           -- table.info
                                                                                   -- table.f4
  - DATA DESCRIPTION
                                               -- table.info
                                                                  `-- table.lock
                           -- table.lock
                                                                                   -- table.f4 TSM1
    -- table.dat
                                               `-- table.lock
                                                              -- STATE
                          FLAG CMD
                                                                                  -- table.f5
    -- table.f0
                                                                  -- table.dat
                                            -- POLARIZATION
                           -- table.dat
                                                                                  -- table.f5 TSM1
    -- table.info
                                                                  -- table.f0
                                               -- table.dat
                           -- table.f0
                                                                                  -- table.f6
    -- table.lock
                                               -- table.f0
                                                                  -- table.info
                           -- table.info
                                                                                   -- table.f6 TSM1
                                                                  `-- table.lock
   DOPPLER
                                               -- table.f0i
                           -- table.lock
                                                                                   -- table.f7
    -- table.dat
                                               -- table.info
                                                              |-- table.dat
                       -- HISTORY
                                                                                   -- table.f7 TSM1
    -- table.f0
                                                              -- table.f0
                                                -- table.lock
                           -- table.dat
                                                                                   -- table.f8
    -- table.info
                                                               -- table.f1
                                            -- PROCESSOR
                           -- table.f0
    -- table.lock
                                                                                   -- table.f8 TSM1
                                               -- table.dat
                                                              -- table.f10
                           -- table.info
                                                                                   -- table.f9
   FEED
                                               -- table.f0
                           -- table.lock
                                                                                   -- table.f9 TSM0
    -- table.dat
                                               -- table.info
                          OBSERVATION
                                                                                   -- table.info
    -- table.f0
                                               `-- table.lock
                           -- table.dat
                                                                                   -- table.lock
    -- table.f0i
                                              SORTED TABLE
                           -- table.f0
    -- table.info
                                               -- table.dat
                           -- table.info
    -- table.lock
                                                                                  15 directories, 88 files
                                               `-- table.info
                           -- table.lock
```


CASA special features:

b) the *Measurement Equation* (Hamaker, Bregman, & Sault 1996 + Sault, Hamaker, & Bregman 1996) implemented as a set of C++ classes for radio astronomical calibration and imaging

$$\vec{V}_{ij} = \vec{M}_{ij} \vec{B}_{ij} \vec{G}_{ij} \vec{D}_{ij} \int \vec{E}_{ij} \vec{P}_{ij} \vec{T}_{ij} \vec{F}_{ij} \ S\vec{I}_{v}(l,m) \, e^{-i2\pi (u_{ij}l + v_{ij}m)} dl \ dm + \vec{A}_{ij}$$

where

the vectors are: V = visibility = f(u, v), I = Image to be calculated,

A = additive baseline-based error component

the matrices are: M = multiplicative, baseline-based error component

B =bandpass response

G = generalised electronic gain

D = polarisation leakage

E = antenna voltage pattern

P = paralactic angle

T = tropospheric effects

F = ionospheric Faraday rotation

S = mapping of I to the polarization basis of the observation

other variables and indices are:

l, m = image plane coordinates, i, j = telescope ID pairs = baseline, u, v = Fourier plane coordinates

CASA special features:

b) the *Measurement Equation* (Hamaker, Bregman & Sault 1996) implemented as a set of C++ classes for radio astronomical calibration and imaging (continued)

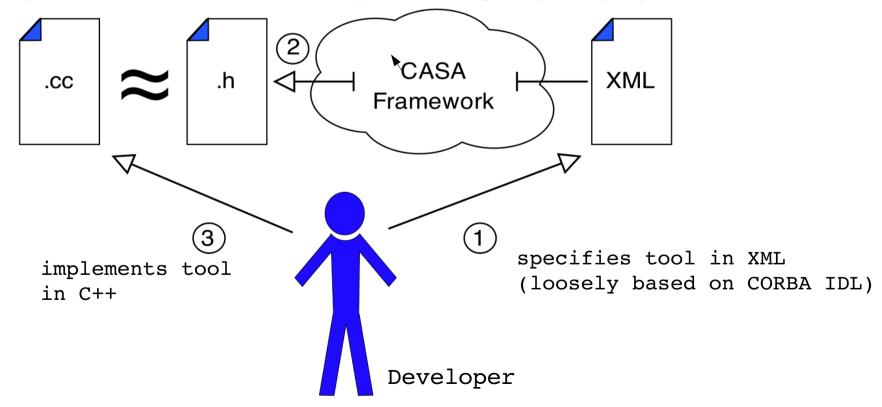
Assuming, e.g., independence of the matrices from (l,m), the ME can be solved for individual calibration components.

$$\vec{V}_{ij}^{obs} = \vec{B}_{ij} \vec{G}_{ij} \vec{D}_{ij} \vec{P}_{ij} \vec{T}_{ij} \vec{F}_{ij} \ \vec{V}_{ij}^{ideal}$$

ideal visibility known from calibrator source

 \Rightarrow have set of linear equations.

The actual calculation of the component is then a χ^2 minimization.


The calibrater (cb) tool contains a set of **solvers** for the different calibration components.

CASA special features:

c) A programmable command line interface with scripting
Originally AIPS++/CASA had GLISH
Abandoned in 2006 for a Framework Architecture of tools

Framework generates headers + bindings to scripting language + documentation

CASA special features:

c) A programmable command line interface with scripting (continued)

Framework Architecture of 17 tools can be bound to any scripting language,

presently selected is **Python (augmented by IPython)**

```
at – atmosphere library
ms – Measurement Set utilities
mp – Measurement Set Plotting, e.g. data (amp/phase) versus other quantities
cb – Calibration utilities
cp – Calibration solution plotting utilities
im – Imaging utilities
ia – Image analysis utilities
fg – flagging utilities
tb – Table utilities (selection, extraction, etc.)
me – Measures utilities
tp – table plot
vp – voltage patterns
qa – Quanta utilities
cs – Coordinate system utilities
pl – matplotlib functionality
sd - ASAP = ATNF Spectral Analysis Package (single-dish analysis imported from ATNF)
sm - simulation
```


CASA special features:

c) A programmable command line interface with scripting (continued)

Python (augmented by IPython)

Gives features such as

- tab completion
- autoparenthesis
- command line numbering
- access to OS, e.g.
 Lines starting with '!' go to the OS.
 a = !ls *.py to capture the output of 'ls *.py'.
 !cmd \$myvar expands Python var myvar for the shell.
- history
- execfile()
- comfortable help

CASA special features:

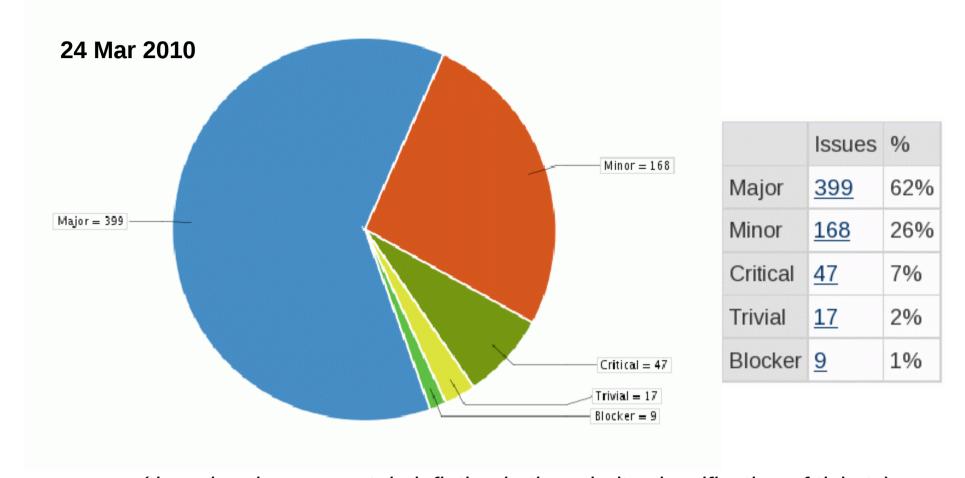
c) A programmable command line interface with scripting (continued)

In addition to toolkit: high-level tasks for the standard user

toolkit (implemented in C++) → tasks (implemented in Python)

e.g. the task *importfits* is based on the tool *ia* (image analysis):

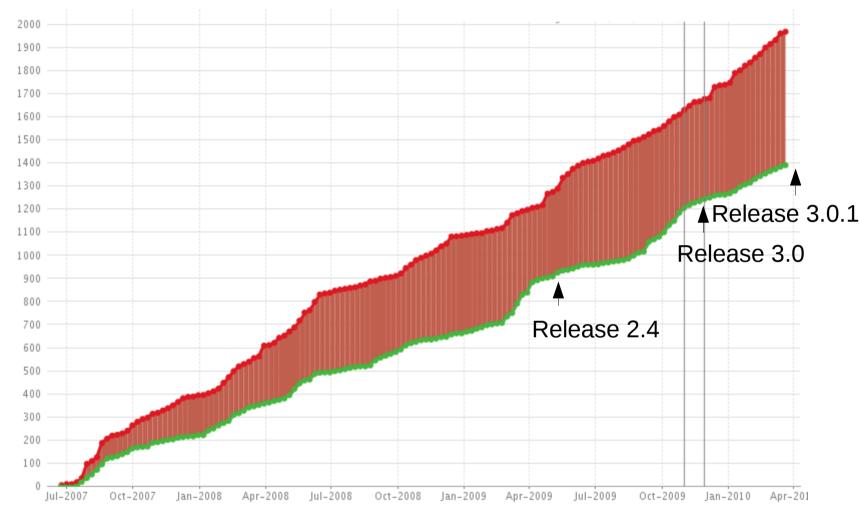
```
#Python script
casalog.origin('importfits')
ia.fromfits(imagename, fitsimage, whichrep, whichhdu, zeroblanks, overwrite)
ia.close()
```



CASA status

- Since Dec 2009 in public release under GPL = anybody can download, no warranty (see http://casa.nrao.edu), limited support (help desk, needs registration)
- Tutorials for the user community regularly given
- Naming scheme:
 - release X.Y.O "major release" (once or twice per year)
 - release X.Y.Z, $Z\neq 0$, denotes "patch release" = major release with urgent improvements
- The first public release was CASA 3.0.0 (Dec 2009)
- Release 3.0.1 has been published this month.
- At this tutorial you are going to use release 3.0.1
- Development platforms: Linux (RHEL) + Mac OS X
- Supported platforms (binary distribution): RHEL, Fedora, openSuSE, Ubuntu, Max OS X
- Code kept in svn repository at NRAO, Socorro
- Presently have approx. 4200 modules, 1.5E6 lines of code, 1E6 lines of comments
- The core functionality (mostly derived from AIPS++) was split off into casacore for use by other projects (also available at http://code.google.com/p/casacore/)

CASA status

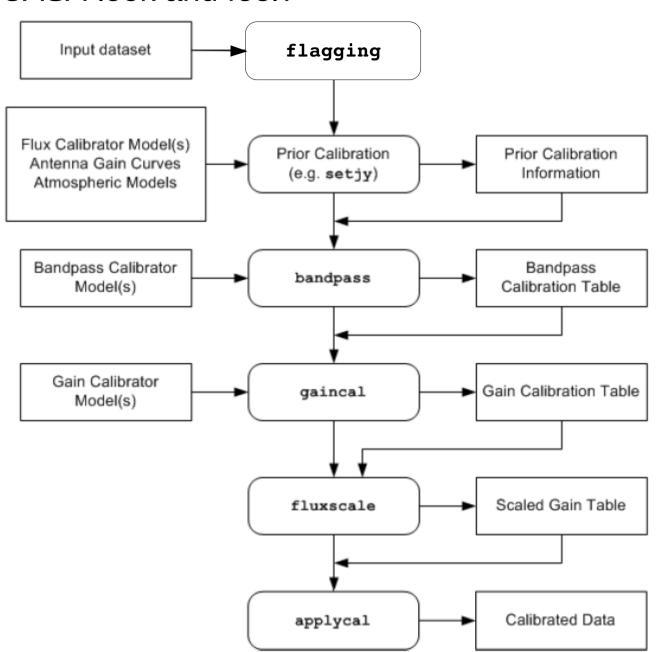
• Status in terms of JIRA tickets (bug reports and requests for new features)



(there has been a certain inflation in the priority classification of tickets)

CASA status

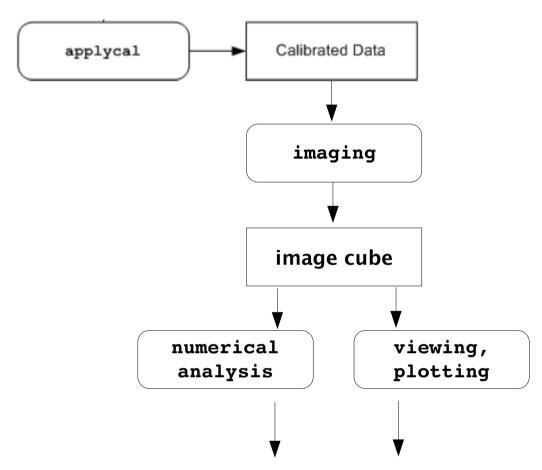
JIRA tickets


For release 3.0 approx. 225 issues were resolved/closed, another 180 for 3.0.1. These include not only bug fixes but also new features and improvements. Testing has intensified leading presently to an increased rate of issue reports.

How does *CASA* look and feel?

A typical analysis session

Part 1: flagging and calibration



How does *CASA* look and feel?

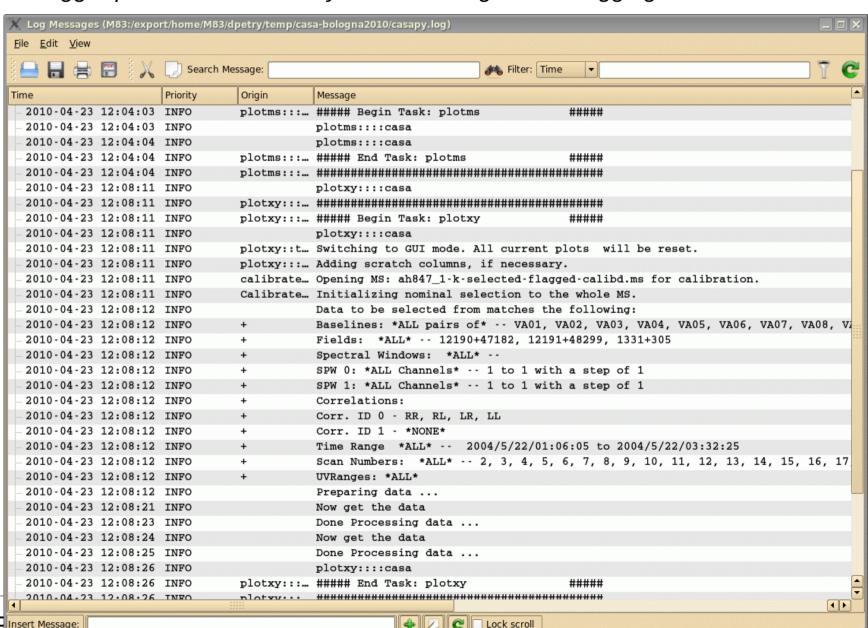
A typical analysis session

Part 2: imaging and image analysis

publication-ready plots and numerical results

How does CASA look and feel?

Pictures from a typical analysis session


1) Startup: open terminal and start *casapy*

Available tasks and tools are listed and the logger window is opened.

```
dpetry@M83:~/temp/casa-bologna2010
[dpetry@M83 casa-bologna2010]$ casapy
CASA Version 3.0.1 (r11099)
  Compiled on: Thu 2010/04/15 04:08:39 UTC
    For help use the following commands:
                           - Task list organized by category
    tasklist
    taskhelp
                           - One line summary of available tasks
    help taskname
                           - Full help for task
                           - One line summary of available tools
    toolhelp
    help par.parametername - Full help for parameter name
    Single Dish sd* tasks are available after asap_init() is run
Activating auto-logging. Current session state plus future input saved.
Filename
               : ipython.log
Mode
               : backup
Output logging : False
Raw input log : False
Timestamping
               : False
State
               : active
CASA <2>:
```


The logger provides functionality for monitoring and debugging command execution.

Pictures from a typical analysis session

2) enter commands in a MATLAB-like environment

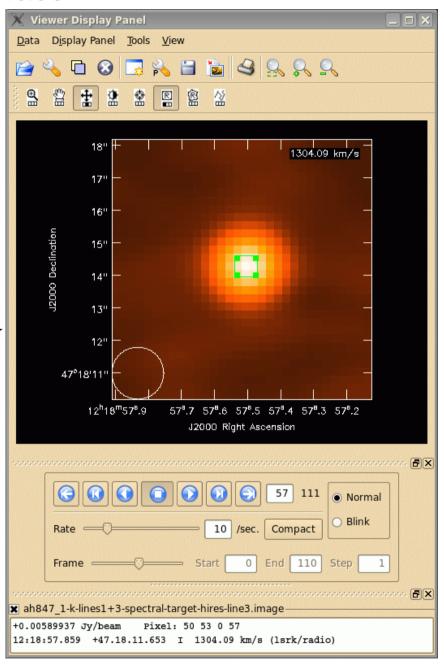
recall previous settings

list present settings
 for given task
(includes parameter
 verification)

```
dpetry@pc014720:~/temp/radio-analysis/cqtau+mwc480 - Shell - Konsole
Session Edit View Bookmarks Settings Help
CASA <15>: fluxscale(vis='AT352 A071103-K', caltable='AT352 A071103-K-gain', fluxtable
='0', transfer='1')
CASA <16>: applycal(vis='AT352 A071103-K', qaintable='AT352 A071103-K-qain', field='2'
CASA <17>: tget clean
  -----> tget(clean)
Restored parameters from file clean.last
CASA <18>: inp
  -----> inp()
# clean :: Deconvolve an image with selected algorithm
                    = 'AT352 A071103-K' # name of input visibility file
imagename
                                        # Pre-name of output images
                      'cqtau-3-target'
field
                             '2'
                                          Field Name
SDW
                                          Spectral windows:channels: '' is all
selectdata
                                           Other data selection parameters
                           False
mode
                           'mfs'
                                           Type of selection (mfs, channel, velocity,
niter
                             500
                                           Maximum number of iterations
gain
                                           Loop gain for cleaning
threshold
                        '0.0mJy'
                                           Flux level to stop cleaning. Must include
                                           method of PSF calculation to use during min
psfmode
                         'clark'
imagermode
                                            Use csclean or mosaic. If '', use psfmode
multiscale
                              []
                                           set deconvolution scales (pixels), default:
interactive
                            True
                                           use interactive clean (with GUI viewer)
                                           Number of iterations before interactive pro
     npercycle
                             100
mask
                                        # cleanbox(es), mask image(s), and/or region(
imsize
                    = [512, 512]
                                        # x and y image size in pixels, symmetric for
cell
                    = ['0.03arcsec', '0.03arcsec'] # x and y cell size. default unit
phasecenter
                                        # Image phase center: position or field index
                                        # rest frequency to assign to image (see help
restfrea
    Shell
```


Pictures from a typical analysis session

3) where needed, tools have GUIs:


plotxy, plotcal, browsetable, viewer, clean

(started in separate threads)

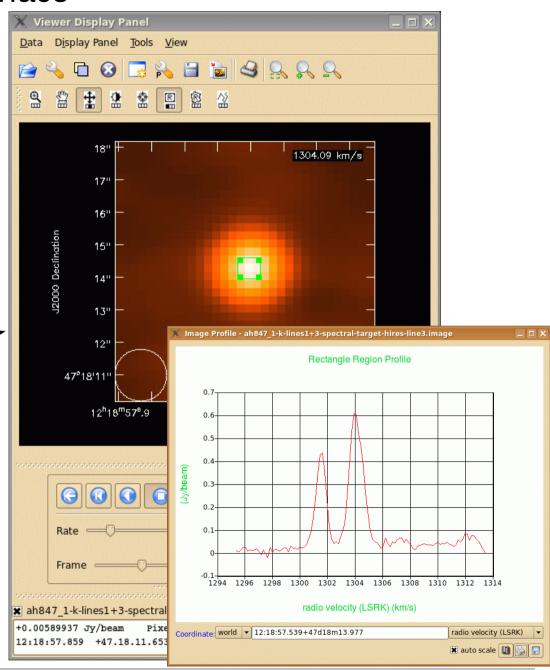
The *viewer* is a powerful multifunction tool for data selection and visualization.

Uses Qt widget set (but 80% independent)

Rendering based on pgplot

Pictures from a typical analysis session

3) where needed, tools have GUIs:


plotxy, plotcal, browsetable, viewer, clean

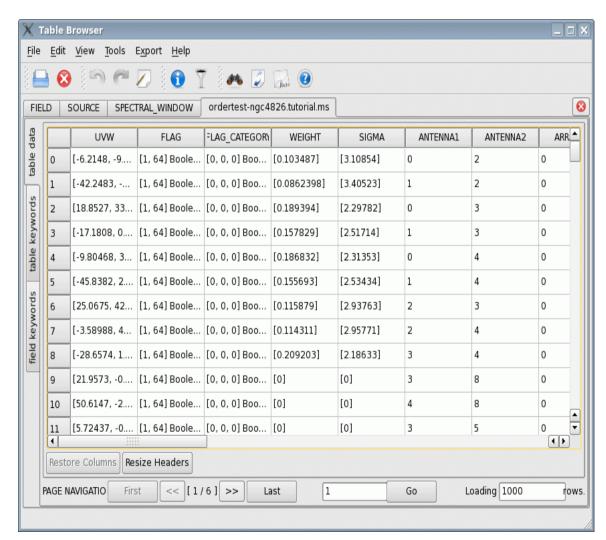
(started in separate threads)

The *viewer* is a powerful multifunction tool for data selection and visualization.

Uses Qt widget set (but 80% independent)

Rendering based on pgplot

A typical analysis session


3) where needed, tools have GUIs:

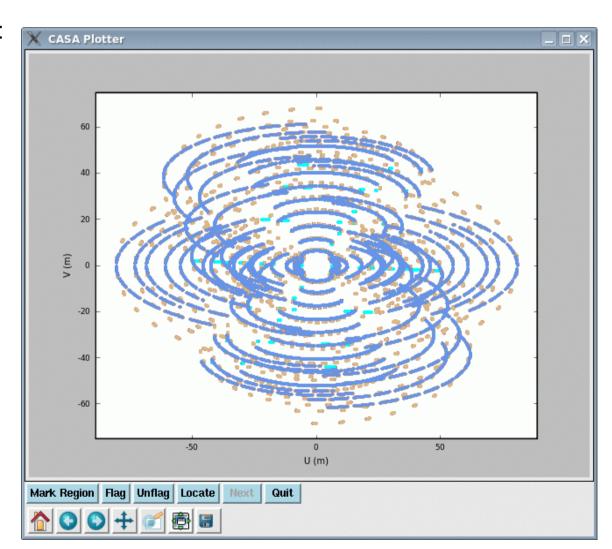
plotxy, plotcal, browsetable, viewer, clean

(started in separate threads)

browsetable permits you to explore any CASA table, e.g. Measurement Sets

Also Qt-based.

A typical analysis session


3) where needed, tools have GUIs:

plotxy, plotcal, browsetable, viewer, clean

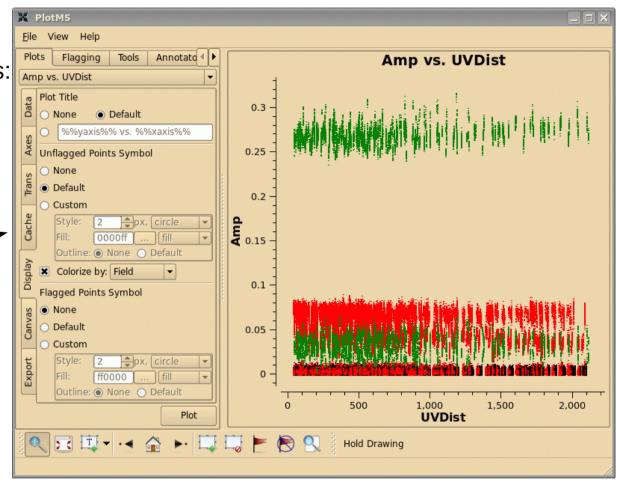
(started in separate threads)

plotxy is a specialized tool
for diagnostic plots and
data selection

To be phased out.

A typical analysis session

3) where needed, tools have GUIs:


plotxy, plotcal, browsetable, viewer, clean

(started in separate threads)

plotms is going to replace plotxy. Release 3.0.0 contains beta version.

plotms is Qt-based and much faster than plotxy.

Uses generic plotting class which in turn uses **Qwt**.

Summary

- The standard science data analysis package for ALMA and EVLA is CASA
- Data from other observatories can also be processed, e.g. VLA, BIMA, ATCA, ...
- CASA derives from AIPS++ (partially survives in casacore)
- approx. 20 people are working on CASA in North America, Europe, and Japan
- CASA is a toolbox with
 - MATLAB-like user interface
 - GUI tools for data selection, browsing, and image processing
- the heart of the science analysis code is the *Measurement Equation*
- the internal data format are CASA Tables
- the *Measurement Set* is the *CASA* data format for visibility data (it is technically a Table with several well-defined sub-tables)
- CASA is publicly available under GPL for Linux and Mac OS X
- The first public release of CASA (version 3.0.0) became available in December 2009
- The latest release is version 3.0.1