

ALMA post-MS studies: the journey from AGB to PN

G. Umana INAF-OACt

· 1. 1.

 -AGB, post-AGB and PN
 -mm observations of CSE in AGB→PN: continuum and line
 -problems still unresolved
 -ALMA contribution

 $AGB \rightarrow PN$:

Final phase of low-mass stars ($M_{MS} \sim 0.8 - 8.0 M_{Sun}$) Destiny of majority of stars in the Galaxy

Among the best ISM polluters important quantities of processed material to the ISM (Implications on Galaxy evolution)

CSE: a ideal laboratory to study interaction between winds (collimated) and ISM

Molecular lines , very good tracer of CSE

Single-dish (overall properties, Mass-loss,...) Interferometers (density distribution (maps), kinematic)

Aims:

✓ Mass-loss: (multi events?)

 Quantify and qualify (chemical composition) of processed gas returned to ISM

Implication on "dust cycle" of ISM

Number of objects

Circumstellar Molecules

Molecule 20 Chem. Molecule 20 Chem. 0 \mathbf{C} 0 \mathbf{C} Presently 69 molecular 2-atoms AICI 1(-7)NaCl 1(-9)AIF 4(-8)OH 2000 2(-4)4(-8)species detected in CSE PN 2 C_2 2(-6)CO $600 \quad 5(-4) \quad 1(-3)$ SiC $\overline{2}$ 4(-8)CN 402(-7)5(-6)SiN 2(-8)CPSiO 500 5(-6) 1(-7)2(-8)1(-7) 1(-6)CS 35 SiS 207(-7)2(-6)KC1 2(-9)SO 202(-6)55% detected in AINC HNC 3-atoms 1(-9) $15 \quad 1(-7)$ 1(-7) C_3 1 1(-6)MgCN 1(-9)IRC +10216 MgNC C_2H 204(-6)2(-8)5 NaCN C_2S 1(-6)2(-8) SiC_2 CO_2 $15 \quad 3(-7)$ Bias : 53(-7)HCN 1204(-6)2(-5)SICN 4(-9) H_2O 300 3(-4)1(-6)SiNC 4(-9)-strong mass-loss H_2S 15 2(-6)201(-5) SO_2 2 ℓ-C₃H 4(-8) HC_2N 8(-9)4-atoms -D=120 pc C_3N H_2CO 53(-7)1(-8)1 C_3S 3(-8) NH_3 54(-6)1(-7) C_2H_2 7 SiC₃ 3(-9)5(-5)HC₃N 5-atoms C_5 1(-7)1(-6)105 HC₂NC C_4H 3(-6)2(-9) C_4Si 3(-9) H_2C_3 2(-9)c-C₃H₂ 53(-8)SiH₄ 2(-7)CO e masers lines CH_4 4(-6) C_5H 6(-8)6-atoms CH₃CN 5 3(-9) HC_4N 1(-9)more common C_5N 9(-9) C_2H_4 1(-8) H_2C_4 5(-9)HC7N \geq 7-atoms C_6H 8(-8)24(-8)1(-8) C_7H 3(-9)HC₉N C_sH 1(-8)H₂C₆ 2 HC₅N 5 2(-7)21(-9) HCO^+ Ions:

I<u>RC+10216</u>

Circumstellar Molecules

IRAM PdB, 3" Lucas & Guielin 1996

Stellar origin

Shell (photodissociation + ongoing chemistry)

Perfect tool to study physical conditions within CSE - Check for chemistry modeling.

Unfortunately only in IRC+10216!!!!!

CO envelope extension:

$R_{co} \rightarrow$ Photodissociation -UV radiation of local Interstellar Medium (ISRF)

 R_{CO} function of mass-loss (Mamon et al., 1988)

-self-shielding CO, dust shielding, H_2

Low mass-loss rates (10⁻⁶ Msol/yr) $R_{CO} \sim 10^{16}$ cm High mass-loss rates (10⁻⁴ Msol/yr) $R_{CO} \sim few 10^{17}$ cm

(Bujarrabal & Alcolea, 1991)

 $R_{CO} \propto \sqrt{\dot{M}} f_{CO}$

CO -line profiles

Knapp & Morris, 1985 Olofsson, et al., 1993 Schöier & Olofsson, 2001 Ramstedt et al., 2008

 $10^{-7} \le M \le 5 \times 10^{-5}$ MSun/yr O-rich

$$3 \times 10^{-7} \le M \le 5 \times 10^{-5}$$
 MSun/yr C-rich

G. Umana

Ramstedt et al., 2008

ALMA Fmin~ 5σ (σ =sensitivity for velocity pixel 1 km/s)

1 hour Fmin~5 mJy $dM/dt=10^{-6}$ D ~34 kpc $dM/dt=10^{-7}$ D~ 8.5 kpc GC

4 hours Fmin~2.5 mJy
dM/dt=10-6 D~50 kpcdM/dt=10-7 D~15 kpcWe are getting close to LMCMass-loss studies in environments with
different metallicity

Only done for IRC+10216

ALMA would provide <u>frequency coverage</u> and <u>sensitivity</u> for multi-transition observations in large samples: physical conditions inside CSEs

G. Umana

Mass-loss from single-dish: averaged over 300-10000 yrs (characteristic timescale for CSE to form)

Open questions: CSE geometry still unclear Asymmetry already present in AGB? Multi mass-loss events?

Millimeter Interferometric observations :

Morphological and kinematic infos on molecular CSEs -Overall structure -Mass distribution -dynamic

Mostly CO, but also other molecules.....

Tools

Rolfselma (1989)

Data Cube

✓A cut (1D) along z at fixed m,l
Line profile

 ✓ A series of "line profiles" along m (N-S) or I (E-W)
 P-V plot

✓A 2D map at fixed velocity Channel map

 ✓ Integrating all the "channel maps" over v.

Global structure

Tools

Rolfselma (1989)

For an envelope expanding with a constant velocity vexp the iso-velocity curves are circles

(Rmax at the sys velocity)

CSE: Morphology

IRAM PdB project CO $J=2 \rightarrow 1$ (230 GHz), CO $J=1 \rightarrow 0$ (115 GHz),

-Neri et al., 1998 -Castro-Carrizo et al , 2004; 2007

More than 60 objects in AGB and PPN -sample covers large variety of stellar parameters (variability, chemistry...)

- bias vs mass-loss, distance,....

Results:

-AGB, CSE generally with circular symmetry and isotropic expansion

-Growing evidences (new PdB) for departure from isotropy and mass-loss variability

But also BIMA and SMA

Fong et al., 2006

CSE: morphology

BIMA: CO J=1 \rightarrow 0 115.271 GHz, $\theta \approx 13^{"}$, spe_res=2 km/sec + 12m (to recover extended emission)

IRC+10216

100 0 -100 100 0 (arcsec) 畄 100 0 -100 100 0 -100 6000 AU 100 0 100 0 −100 100 ∆ RA (arcsec) 0 -100 100 100 0 -100 -100 0 -100

← 200″ →

Spherically symmetric CSE , vexp constant

Fong et al., 2006

BIMA: CO J=1 \rightarrow 0 115.271 GHz, $\theta \approx 13^{"}$, spe_res=2 km/sec + 12m NRAO (to recover extended emission)

-Channel map "residual"

Castro-Carrizo et al., 2007

CSE: morphology

CSE morphology

Morphology: TT Cyg

$CO(J=2\rightarrow 1)$, channel maps (1 km/sec)

IRAM PdB

G. Umana

Episodic mass-loss: how common in AGB?

Modeled as an equatorial expanding wind (disk) + Bi-polar outflow

✓ Episodic mass-loss?

✓ Presence of outflows, disk?

How common are those (*unexpected*) phenomena?

The angular dimension of CO radius can be expressed as function of the mass-loss (Mamon et al., 1988), $f_{CO}=10^{-3}$, $v_{exp}=15$ km/sec

$$\theta_{\rm CO} \approx 6 \left(\frac{\dot{M}}{10^{-6}}\right)^{0.6} \left(\frac{1 kp c}{D}\right) \quad \text{arcsec}$$

θ_{CO}(8Kpc, 10⁻⁶ M_{Sun}/yr)~ 0.75 ″

Sensitivity ok: 1hr, S/N~90 (1 km/s)

 θ_{CO} (50 Kpc, 10⁻⁵ M_{Sun}/yr)~ 0.5 "

The high resolution and sensitivity of ALMA would allow to maps (in details) the molecular CSEs in large sample of stars:

$$S_{\nu} \propto \nu^2$$

 $Qv=Q_0(v/v_0)^{\beta}$

 β depends on grains composition and dimension

mm measurements: characterization of CSE mineralogy

ALMA community day IRA Bologna 29-30 aprile 2010

The flux density emitted from thermal dust in an expanding CSE (Knapp et al., 1993):

For L=10⁴ L_{Sun}
R=10¹⁸ cm
Vexp=15 km/sec
$$\beta \sim 1$$

 $S_{v}(mJy) = 1.6 \times 10^{-4} \frac{M_{dust}}{D^{2}v_{exp}} L^{0.2} R^{0.6} v^{(2+\beta)}$
 $S_{v}(mJy) \approx 15 \left(\frac{\dot{M}_{dust}}{10^{-6}}\right) \left(\frac{1 \text{ kpc}}{D}\right)^{2} \left(\frac{v}{230}\right)^{3}$

Fmin~5σ (σ=in mJy @ 230 GHz) ALMA (full array) In 1 hr= Fmin~85 μJy

dM/dt= 10⁻⁵ D=40 kpc dM/dt=10⁻⁷ D=8 kpc

(D_{LMC} in 2 hrs) (GC in 4 hrs) $S_{350~GHz} \sim 4~S_{230~GHz}$

The central star: mm continuum

The photospheric flux at frequency v from a star of radius R, temperature T, at distance D can be express as:

$$S_{\nu} = \frac{\pi R^2}{D^2} 2 \text{ k T} \frac{\nu^2}{\text{c}^2}$$

@ 230 GHz (1.2mm)

$$S_{250} = 1.42 \times 10^{-4} \,\mathrm{T} \,\vartheta^2$$

with S in mJy
T in K
$$oldsymbol{ heta}$$
 in mas

Important photospheric contribution at mm (Rstar \geq 300 R_{Sun})

Surveys IRAM 30m, SEST 15m @230GHz : Altenhoff et al., 1994; Wamsley et al., 1991,..., Dehaes et al., 2007

<u>AGB stars:</u>

- -bright mm objects (10-200mJy)
- Observed fluxes consistent (more or less) with photospheric contribution (in some cases possible dust contribution)

Fluxes 20-100 mJy 10 min , 50 antennas, 1 σ= 0.03 mJy Observations as those of α Ori will be a "piece of cake" for ALMA!

Post-AGB evolution

HST images:

PN show a rich variety of morphology:

-small scale structures -not consistent with *Interacting winds model*

Which *shaping mechanism* transform the (almost) spherical CSE in AGB into the CSE observed in PN?

Several models have been proposed:

Principal ingredient

-interaction between the fast but tenous wind (begin of PPNs) with the massive, slow AGB wind.

...cooked in different sauces..

- ✓ Interaction collimated, fast winds (jets?)/CSE?
- Interaction fast wind /asymmetric CSE
 (binarity ?, asymmetric mass-loss in AGB?)
- + a possible magnetic field contribution (collimator?)

 $AGB \rightarrow PNe$

In AGB and early post-AGB : Only molecular gas and dust tracers

In late post-AGB (YPNe) is possible to study ALL the stellar ejecta components: gas (both ionized and molecular) and dust

Mass-loss history imprinted in the CSE CO the best means to study CSE (detected in AGB, postAGB and PNe)

Interferometric CO observations allow: Map the distribution of molecular gas within the CSE Track its kinematic

Interferometric observations of molecular CSE in objects in different evolutionary phases

→ to follow as its characteristics evolve as AGB→ PNe

Clues on shaping (possibly!)

Molecular CSE (CO) → function of ISM radiation field (as in AGB), but in PPN and PNe also of central object UV

There is a increasing "erosion" of molecular CSE as the central object evolves $UV \sim 10^5 \ 10^7 \ UV_{ISM}$

✓ Survey single dish: (detection rate)
 PPNe ~AGB= 80%
 PNe ~35%

G. Umana

ALMA community day IRA Bologna 29-30 aprile 2010

Molecular CSE (CO) → function of ISM radiation field (as in AGB), but in PPN and PNe also of central object UV

- There is a increasing "erosion" of molecular CSE as the central object evolves $UV \sim 10^5 \ 10^7 \ UV_{ISM}$
- ✓ Survey single dish: (detection rate)
 PPNe ~AGB= 80%
 PNe ~35%
- Interferometric observations (PdB, BIMA, SMA):
 R_{co} in post-AGB << R_{co} in AGB (~ 2 orders of magnitude)

The observed sample has a bias towards:

- ✓ CO brightest objects (to be detectable with actual sensitivities)
- ✓ Closeby objects (to map structures with actual angular resolution)
- ✓ "Interesting" structures at other wavelengths

Few examples: IRAS 22272+5435

CO J=1→0 (115.27 *G*Hz)

BIMA +12m NRAO res_spa ~2", res_spe=1 km/sec

Cube: Channel map=1 km/sec Δv =-37 -18 km/sec σ =0.21 Jy/beam

Channel map consistent with a spherically expanding envelope but

...deviating from spherical symmetry on smaller scale!

G. Umana

Few examples: IRAS 22272+5435

G. Umana

Well known PPN (binary central object) Extended optical nebula ~1', whose shape is the origin for the name Presence of orbiting material proposed (Jura et al 1995, 1997,...) to justify -presence of big grains (sub-mm) - mixed chemistry in the CSE

PdB CO J=2→1, 230.538 GHz (CO J=1→0 115.271 GHz)

Bujarrabal et al., 2005

res_spa =1.3" x0.5 " (2.6 x 1.0) res_spe=0.6 km/sec

A disk orbiting the Red Rectangle

Few examples: NGC 7027 (YPN)

BIMA +12m NRAO res_spa ~6", res_spe=2 km/sec

Cube: Channel map=2 km/sec Δv =-37 -18 km/sec 3σ =0.50 Jy/beam

Consistent with a expanding envelope

Uncomplete shell N-W (blu-shifted) S-E (red-shifted)

..we see the effects of an agent that is progressively pierching the molecular envelope...

SMA

G. Umana

Dinh-V-Trung et al., 2006

Few examples: NGC 7027 (YPN)

CONTINUUM

345 GHz Beam : 1.71" × 0.85" (73°) Total flux : ~ 1.45 Jy

230 GHz Beam : 2.65" x 1.52" (77°) Total flux : ~ 3.6 Jy

JCMT : 3.8 ± 0.2 Jy (Knapp et al. 1993)

Integrated intensity ¹²CO(2-1) and 1.3 mm continuum

To understand "the shaping": -need to observe *different stages* -need to *combine different components* of the ejecta *High density torus:* Shields the gas from being quickly photodissociated along the equator

G. Umana

CRL 618: a PN in the making

Nakashima et al., 2007

The History of the inner HII.... over 15 years

Umana, Trigilio and Agliozzo, 2010

300 15 GHz HST (Halpha) - Radio (8GHz) 4^h42^m53.40^s 200 S_{15 GHz} (mJy) 53.60^s 100 Right Ascension (J2000) 53.80^s 1970 1980 1990 2000 2010 anni 7UU ₿ 9_{15 GHz}(mas 600 54.00^s 500 400 300 54.20^s 200 100 Ω +54" +50"+48''+36°06'56" +52''+46''1980 2000 1970 1990 2010 Declination (J2000) anni

CRL 618: a PN in the making

•Variation of density flux, expansion of the HII -perpendicular to the torusconsistent with evolution of central HII ...in human time scale •Very interesting to follow this together "on going chemistry" of CSE

(Sub)-mm of transition objects allow to study the dust component in their CSEs.

In some cases (YPNe) the ionized fraction of CSE can give also a contribution.

As for molecular CSE, continuum observatios have a bias toward:

- ✓ Bright objects (to be detectable with actual capabilities)
- Closeby objects (to be mapped with actual resolving power)
- ✓ "Interesting objects" in other wavelengths.

(sub)-mm observations 30≤v≤900 GHz
-Strong constraints on the SEDs

(thermal dust contribution extends to near and far-IR)
- Critical frequency range:
To disentagle between ionized (free-free) and dust components

Up to now, most of the mm continuum observations have been conducted in "spectral line" projects (ch 0).

-In most of the cases the mm source is very compact and it is NOT possible to localize the mm source within the molecular CSE.
-It is possible to get clues on grains emissivity

→ Related (also) to the grains size (Knapp et al., 1993)

$$S_{\nu} \propto \nu^{(2+\beta)}$$

 β is function of both the grains composition and of their size.

Millimeter continuum

Sahai et al., 2006 Sanchez-Contreras et al., 2007 Jura et al., 2000

Recent mm and sub-mm observations of 3 PPNs pointed out The existence of cold, big grains (from SED fitting)

β 0.6-1.2

Morphological and kinematic properties of molecular CSE (as traced by CO) point to the interaction of fast post-AGB winds with the ABG remnant as origin of shaping .

Only for very few (and peculiar) objects!

In some cases such wind are collimated (outflows). we see the *imprinting* of such outflows as *cavities* in the molecular CSE The collimating "agent" is, at the moment, unknown

In other cases (binaries) the presence of a circum-binary, rotating disk appears to indicate that post-AGB winds propagate in a non-uniform AGB remnant

There are different shaping model for single star or binary system?

It is essential to map and get kinematic for all the emitting components of the ejecta

dust

continuum (chs 3,4,5,6,..)

Synergy: **JWST** morphology

High sensitivity, high angular and spectral resolution morphological and kinematical studies of different components of CSEs

In large samples of PPN and PNe!!!

✓ The central object is evolving toward higher temperatures → 10⁴ K onset of ionization in the CSE (...we can use more diagnostics) mapping/deriving kinematics of fast winds in the radio-mm

✓ In YPNe the mechanism responsible for shaping is still "at work" (....or its effects are still "fresh"!...)

Start with a suitable sample: hot post-AGB

- -Observed mid-far IR excess
- -Spectral Classification: B
- Observed variability: both spectral and photometric
 - Onset of ionization→ radio free-free
 - Original sample of 42 hot-post AGB observed at VLA and ATCA

(Umana et al., 2004; Cerrigone et al., 2007; Umana et al., 2009)

- Detected 17 sources; established their evolutionary status (YPNe). Other 25 objects are genuine hot post-AGB stars.
- Radio spectra consistent with a PN in the early stage of its evolution -

Observed some degree of variability!!

Cerrigone, L., Umana, G., trigilio, C., Buemi, C., Leto, P. ., 2008

IRAS 22568+6141: when we put together the CSE components...

Preliminary results:

The central radio component is not observable up to n-IR Strong intrinsic absorption => equatorial structure (disk?) with cold (T~ 50 K) big (a~0.02 cm) grains?????

The dust component: Results

A typical YPN: IRAS 17423-1755

G. Umana

Umana et al., 2004

Angular resolution do not allow to localize the mm component <u>A typical YPN</u>

chan 3 (110 GHz) res_spa =0.5", 1σ=0.05 mJy in 1 min *chan 6* (230 GHz) res_spa =0.25", 1σ=0.1 mJy in 1 min

Early ALMA

High resolution and sensitivity maps→ DUST component distribution

1σ=0.16 (0.4) mJy in 1 min at 110 (230) GHz 16 antennas

G. Umana

Mm observations pose strong constraint on SEDs

Buemi et al., 2007

MAMBO@Iram 30m survey of PPNe

ALMA: High resolution and sensitivity mapping → dimensions, dust distributions....

<u>High resolution and sensitive mapping of Molecular</u> (CO but not only) CSE in <u>large sample</u> of AGB, post-AGB stars and PN (very easily within 2-4 Kpc, up to LMC with some integration time)

- -asymmetries in AGB?
- -mass-loss variation
- Interaction central star UV with molecular $CSE \rightarrow$ clues on shaping.

High resolution and sensitive mapping of dust component in CSE in large sample of AGB, post-AGB stars and PN (very easily within 2-4 Kpc, up to LMC with some integration time)

- -Mineralogy in CSE
- -Dust distribution: Disk in PPN?
- Interaction central star UV with dust in $CSE \rightarrow$ clues on shaping.
- Relation with evolving HII inside YPN with the dust \rightarrow clues on shaping