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 What is ALMA?
 ALMA as it will be
 ALMA Operations
 Early Science
 Planning an ALMA observation
 Current status
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 Aperture synthesis array optimised for millimetre and 
sub-millimetre wavelengths (1cm - 0.3mm/30 – 950 
GHz)

 High, dry site, Chajnantor Plateau, Chile (5000m)
 50 dishes with 12m diameter (EU/NA).  
 Baselines from ~15m to 14.5km.
 ALMA Compact Array (ACA) provided by Japan

 12 7m dishes in compact configurations
 4 12m dishes primarily for total-power

 Low-noise, wide-band receivers.  
 Digital correlator giving wide range of spectral 

resolutions.
 Software (dynamic scheduling, imaging, pipelines)

Atacama Large Millimetre/Atacama Large Millimetre/
Sub-Millimetre ArraySub-Millimetre Array
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 Image spectral line emission from CO or C+ in a galaxy 
with similar mass to the Milky Way at a redshift of z = 3, 
in less than 24 hours of observation. 

 Image the gas kinematics in a solar-mass protostellar/ 
protoplanetary disk at a distance of 150 pc. Study the 
physical, chemical, and magnetic field structure of the disk 
and detect the tidal gaps created by planets undergoing 
formation.

 Provide precise images at a resolution of 0.1 arcsec.

Highest-level science goalsHighest-level science goals
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Simulated ALMA image Model

Formation of planets 
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Simulated ALMA image Model

CO in z ≈ 2 sub-mm galaxies

Current observations can resolve only the brightest sub-mm galaxies. These 
seem to be short-lived examples of maximal star formation in ongoing mergers.

Velocity fields disc-like or irregular.
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The first galaxiesThe first galaxies

CO transitions

CII – Main coolant in
the Milky Way 

Line of choice for 
EoR studies

Quasar, z = 6.4
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VLBI observations of Sgr A*VLBI observations of Sgr A*
with phased-up ALMAwith phased-up ALMA

GR ray tracing                       0.6mm VLBI                1.3mm VLBI

Kerr (spinning)
black hole

Schwarzschild
(non-rotating)
black hole
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More science areasMore science areas

 Dust emission from star-forming galaxies at z ~ 10
 Blind surveys for CO in  star-forming galaxies at all epochs
 Detailed studies of cold gas and dust in nearby galaxies; 

AGN torus sructure
 Dynamics of molecular gas around the Galactic Centre
 Star formation: physics and chemistry of collapse, accretion, 

outflows and disks.
 Complex organic (including prebiotic) molecules
 Molecules and dust around evolved stars 
 Planetary atmospheres, cometary nuclei, asteroids
 ...............
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Physical processesPhysical processes
 Aside from non-thermal emission, most of what ALMA will 

see comes from elements heavier than H and He (except 
recombination lines, LiH). Therefore probe stellar products.

 Temperatures are < stellar surface – the “Cold Universe”

 Continuum: thermal emission from dust (scattered emission 
polarized)

 Lines: molecular rotational transitions + redshifted atomic

 Line polarization: Zeeman, Goldreich-Kylafis

 Heating via stellar UV, cosmic rays, hard photons from AGN 
– hence the link to star and galaxy formation

 Non-thermal mechanisms include synchrotron (lower 
frequencies; linearly polarized) and Compton scattering 
(Sunyayev-Zeldovich).
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ALMA as it will beALMA as it will be
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 Baseline range 15m – 14.5 km + ACA + single dish
 Field of view / arcsec ≈ 17 (λ/mm) [12m dish]

                                           29 (λ/mm) [7m dish] 

 Resolution/ arcsec ≈ 0.2(λ/mm)/(max baseline/km)
0.04 arcsec at 100 GHz, 14.5 km baseline
0.005 arcsec at 900 GHz, 14.5 km baseline

 Wide bandwidth (8 GHz/polarization), low noise 
temperatures, good site and antennas, … → sub-mJy 
continuum sensitivity and wide spectral coverage

 Full polarization

Key performance numbersKey performance numbers
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Continuous reconfigurationContinuous reconfiguration
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Transparent site allows full  Transparent site allows full  
spectral coveragespectral coverage
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Basic numbersBasic numbers

Continuum sensitivities for 8 GHz bandwidth, 
Lines 1 km/s; 2 polarizations, 50 antennas, 60s
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 Channel bandwidth 31.25 MHz – 2 GHz (x4 baseband 
channels)

 Maximum 4096 x (4/N) x (2/P) spectral points/channel, 
where N = 1, 2 or 4 is the number of channels and P=2 for 
full polarization; 1 for parallel hands only.

 Maximum spectral resolution 3.8 kHz.
 Tunable FIR filter bank to subdivide 2 GHz baseband into 32 

(possibly overlapping) sub-channels, each 62.5 or 31.25 MHz 
wide

 Flexible combinations of centre frequency and resolution 

Spectral modesSpectral modes
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Correlator modesCorrelator modes

Mode table for 4 polarizations. Single polarization allows 4 times higher
spectral resolution.



Robert Laing
European ALMA Instrument Scientist

 
                      Bologna, April 29th 2010 

 Requirements
 Reduce atmospheric and electronic phase fluctuations to as low a 

level as possible
 Required by imaging and flux scale (decorrelation)

 Techniques
 Fast switching (interleave with observations of a nearby 

calibrator, perhaps at a lower frequency). 20 – 300s cycle times.  
Requires calibrator within ~2o.

 Water-vapour radiometry (measure emission from 183 GHz 
atmospheric line; deduce phase fluctuations on 1s timescales). 

 Self-calibration

Phase calibrationPhase calibration
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Amplitude calibrationAmplitude calibration

 Correcting for atmospheric attenuation
 Dual-load calibration device 

 Primary amplitude calibrators
 Mars: models good, but large
 Galilean satellites
 Asteroids
 Stars
 Compact HII regions

 Cross-calibration
 Planck
 Herschel



Robert Laing
European ALMA Instrument Scientist

 
                      Bologna, April 29th 2010 

ALMA OperationsALMA Operations

 Basic  concepts
 Service mode, scheduled dynamically (weather)
 All observations executed as scheduling blocks, which contain all 

of  the information required to schedule and run the observations 
(calibration)

 Primary data products are image cube; raw, calibrated visibility 
data also available.

 Everything is archived.
 Support

 Software for proposal preparation, reduction, pipeline
 Documentation
 Face-to-face support
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ALMA ProjectsALMA Projects
 Phase I

 Submit proposal using the Observing Tool (OT)
 Review

 Phase II
 Submit observing project, again using the OT
 Preparation of scheduling blocks

 Observations
 Select from queue (weather, priority)
 Accumulate data until goals are met
 Pipeline reduction, quality assurance

 Data distribution
 PI
 Public after proprietary period
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Simulated ALMA image Model

Dataflow

Data-cubes will be
primary product

uv data also
archived
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Simulation and Data ReductionSimulation and Data Reduction

CASA offline
package – go to
 school

Includes simulation
capability
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ALMA Regional CentresALMA Regional Centres

 Three ALMA Regional Centres
 Europe
 North America
 East Asia

 Primary interfaces to their respective user communities
 Assist users in proposal/programme preparation and 

data reduction 
 Manage the time allocation process
 Run archive mirrors and deliver data
 Provide AOD and commissioning personnel
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The European ARCThe European ARC

 Central Node at ESO
 Archive and data delivery
 Proposals
 e-mail helpdesk
 VLT support model
 Funded  by ESO/ALMA

 Regional nodes
 Face-to-face user support
 Regional users
 Specialised expertise
 Local/EU funds

IRAM (France, Spain, MPG)
Jodrell Bank (UK)
Leiden (Netherlands)
Bonn/Koeln/Bochum (Germany)
Onsala (Nordic countries)
IRA Bologna (Italy)
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What is Early Science?What is Early Science?
 Minimum

 16 antennas with at least 3 bands out of 3, 6, 7, 9
 Single-field synthesis imaging
 Antenna stations to provide good coverage out to 250m
 Calibration equivalent to current mm arrays (loads + WVR)
 Software
 At least 33% of time available (1 year scheduling period)

 Goals
 Bands 3, 6, 7 and 9 on all antennas; 4 and 8 on some
 Pointed mosaics 
 Baselines out to at least 1 km
 Linear and circular polarization
 Single-dish mapping (including OTF)
 Calibration better than existing arrays
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Priority correlator configurationsPriority correlator configurations
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Planning an ALMA observationPlanning an ALMA observation

 Frequency: value(s), bandwidth(s), resolution(s)
 Spatial resolution 
 Field(s) of view → mosaic
 Largest scale of structure → need for ACA, single dish
 Total intensity, linear and circular polarization
 Sensitivity (integration time/rms noise)
 Structural complexity and image fidelity
 Effect of atmospheric conditions (absorption, phase errors)
 Astrometry, amplitude calibration, scheduling with other 

observations, .....
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What frequency?What frequency?

 Continuum: emission mechanism (e.g. synchrotron ν-α, 
thermal ν2, dust ν3, ...), bearing in mind that system noise 
increases with ν, and phase errors get worse.

 Resolution effects scale with frequency: for detection 
experiments, you may not want to resolve the target.

 Lines: one or more? Line + continuum? Velocity 
resolution?
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Units and conversionsUnits and conversions

 Velocity and spectral resolution: Δν = (Δv/c)ν
 Brightness temperature and surface brightness. B

ν
 is in units 

of Wm-2  s-1  Hz-1  sr-1  (convert to Jy/beam). Remember: 
resolved source + small beam = low signal. Beware of the 
difference between Planck and Rayleigh-Jeans brightness 
temperatures.

T
B
 = brightness

 temperature (K)

ΔS = rms noise
n

p
 = number of

polarizations
Δν = bandwidth
Δt = integration time
N antennas
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Deep SurveyDeep Survey

z < 1.5                             z > 1.5

HDF optical

ALMA simulation
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Deep redshift survey 1Deep redshift survey 1

 Band 3: sensitive continuum + CO lines at all redshifts 
except z = 0.4 – 1 and 1.7 – 2. Maximises field size for a 
single pointing.

 Angular resolution: high enough to avoid confusion, but try 
not to resolve targets → 3 arcsec  → compact configuration. 
No need for ACA or single dish.

 Line widths expected to be ~a few hundred kms-1. Velocity 
resolution 50 kms-1 → 15 MHz channels at 90 GHz → can 
use full 8 GHz bandwidth, 512 channels,  and get maximum 
continuum sensitivity. 4 tunings will cover 84 – 116 GHz.
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Deep survey 2Deep survey 2

 Brightest known sub-mm galaxies have ~10 mJy in 50 kms-1

channel. Suppose we want a factor of 10 fainter with S/N = 
10 → 0.1 mJy rms in 1 channel.  We get 0.05 mJy rms in 8 
GHz, so integration time ~ 2 hr.

 In that time, the continuum rms is 4 μJy, and we can 
combine 4 tunings to get a deep image with rms 2 μJy.

 Number counts suggest that there will be ~10 
sources/primary beam, so to get a decent sample of 100 
galaxies, we need a mosaic of 10 pointings, ~20 hr on-
source + overheads.
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Magnetic-field geometry in Magnetic-field geometry in 
protostellar envelopes 1protostellar envelopes 1

 Thermal emission from dust, polarized by scattering from 
dust grains aligned with the magnetic field. Aim is to test 
ambipolar diffusion models.

 Band 7 (highest sensitivity to polarized dust emission)
 Resolution 1 arcsec (200 AU at 200 pc compared with total 

size of 4000 AU)
 Field size 20 arcsec. FWHM of primary beam is 18 arcsec, 

so need separation ~7.5 arcsec to get uniform sensitivity→
7-point mosaic. 

 ACA to sample scales 10 – 20 arcsec. 
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Dust polarization 2Dust polarization 2

 Inner envelope > a few 10's of μK; 3% polarization, 5σ 
detection → 100 μK rms

 This corresponds to 3.65 x 10-21 Wm-2Hz-1sr-1

 Beam is (π/4 ln2)(1 arcsec/rad)2 = 2.7 x 10-11 sr
 rms ~10 μJy / beam, cf. 0.2 mJy/beam in 60s
 7 hr / field x 7 pointings ~ 50 hr + overheads + ACA
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Early Science Proposals: Early Science Proposals: 
what's different?what's different?

 Number of antennas
 Point-source sensitivity is a factor of ~3 lower with 16 compared 

with 50 antennas
 Image fidelity is worse (simulate)

 Baselines up to 1km → resolution limited (factor of 14.5)
 Receiver bands

 Bands 3, 6, 7, 9 (mostly)
 Restricted range of correlator configurations
 Mosaic/single-dish combination limited; no ACA
 Calibration accuracy
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What's best for Early Science?What's best for Early Science?

 Keep it simple: single fields, sources well within the 
primary beam

 Limited resolution
 Sensitivity will already be good
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Simulated ALMA image Model

Current Status
Antennas and Transporter
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First European Antenna assembledFirst European Antenna assembled
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Simulated ALMA image Model

Foundations
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Simulated ALMA image Model

Buildings and Correlator

AOS

OSF
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Simulated ALMA image Model

5 receivers, each with 4 bands
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Simulated ALMA image Model

Excellent receiver performance

Amplitude Stability: Band 3 Cartridge SN03
45° Elevation,  300 K Load

100 GHz LO Locked to Laser Synthesizer Pol. 0 LSB
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Antenna surfaceAntenna surface

Primary reflector best yet: rms 7.7μm
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PointingPointing
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First fringes at AOS - broad-bandFirst fringes at AOS - broad-band
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Sub-mm fringes and higher Sub-mm fringes and higher 
spectral resolutionspectral resolution

658 GHx VY CMa water maser spectrum             86GHz SiO maser in Orion
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Simulated ALMA image Model

3-antenna interferometry at AOS
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Current configuration (close-packed)Current configuration (close-packed)
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Simulated ALMA image Model

Closure phase

Closure phase for antennas 1, 2, 3

= φ
12

 + φ
23

  + φ
31

Why is it important?

Provided that the phase closes, the 
number of unknown phases to be 
calibrated for N antennas is N – 1.
If not, then each baseline needs 
separate calibration, so there are 
N(N-1)/2 – 1 unknowns. 
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Simulated ALMA image Model

WVR correction in action
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Current ScheduleCurrent Schedule

 First fringes at AOS June – July 2009
Achieved 2009 April 30
 Three antennas at high site, closure phase,  end 2009
Achieved 2009 November 26
 Start of Commissioning and Science Verification Jan 

2010
Achieved 2010 January 22
 Early Science Decision Point and First call for 

proposals late 2010
 Proposal deadline early 2011
 Start of Early Science with 16+ antennas Autumn 2011
 Full operation early 2013
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OutlookOutlook

 No show-stoppers
 All main subsystems basically work
 Key technical risks (phase correction, local oscillator distribution) 

addressed
 Construction budget adequate for completion

 Schedule
 Still very tight (especially front ends)
 EU antennas

 Reliability and efficiency
 Much work needed to make system fully reliable (e.g. receiver 

tuning)
 Sofware test and optimization
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Simulated ALMA image Model

Not without problems
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Simulated ALMA image Model

... but ALMA is coming soon... but ALMA is coming soon


