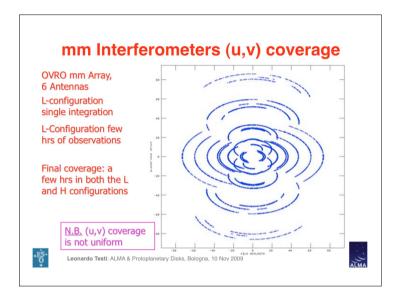
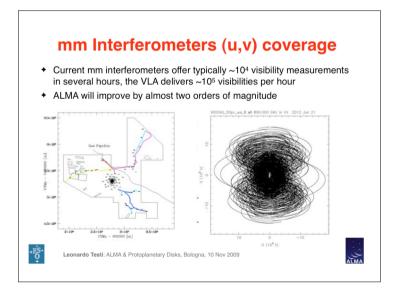
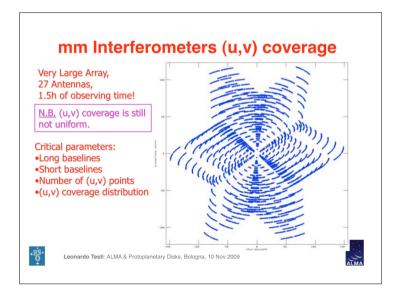


Band	frequency range (GHz)	wavelength range (mm)		ar resolution =200m 18km ec)	line sensitivity (mJy)	continuum sensitivity (mJy)	primary beam (arcsec)	largest scale (arcsec
3	84-116	2.6-3.6	3.0	. 0.034	8.9	0.060	56	37
4	125-169	1.8-2.4	2.1	. 0.023	9.1	0.070	48	32
5	163-211	1.4-1.8	1.6	. 0.018	150	1.3	35	23
6	211-275	1.1-1.4	1.3	. 0.014	13	0.14	27	18
7	275-373	0.8-1.1	1.0	. 0.011	21	0.25	18	12
8	385-500	0.6-0.8	0.7	. 0.008	63	0.86	12	9
9	602-720	0.4-0.5	0.5	. 0.005	80	1.3	9	6

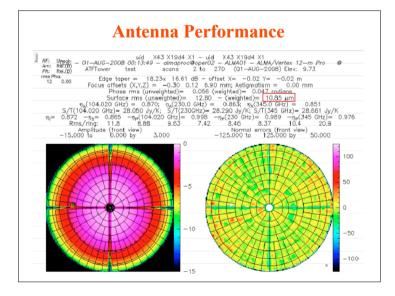


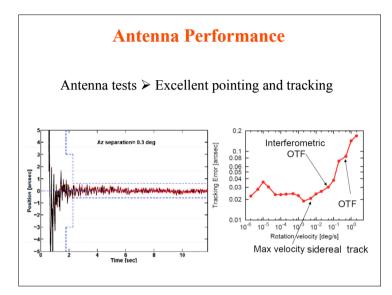


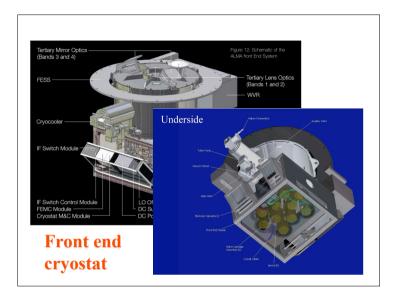


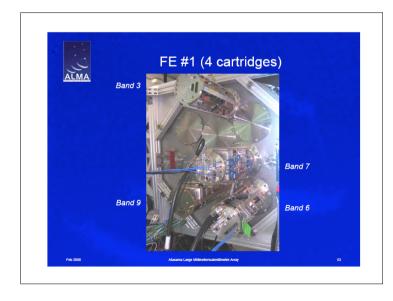


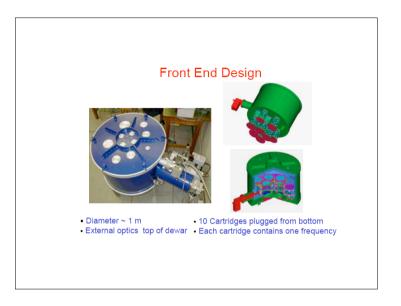
$\theta_{\rm fov}$				ay	
(")		$\Delta I_{\rm m}$ (mJy beam ⁻¹)	θ _{fov} (")	$\theta_{\rm res}$ (")	
113	16	1.6	66	9.6	
73	10	2.1	43	6.2	
47	6.7	3.3	28	4.0	
31	4.3	8.1	18	2.6	
26	3.7	14	15	2.2	
16	2.2	102	9	1.3	
12	1.7	206	7	1.0	
	113 73 47 31 26 16 12 1 single po	113 16 73 10 47 6.7 31 4.3 26 3.7 16 2.2 12 1.7 It single point-source s	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		



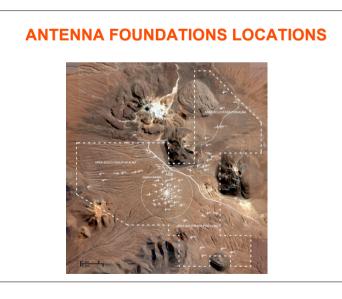


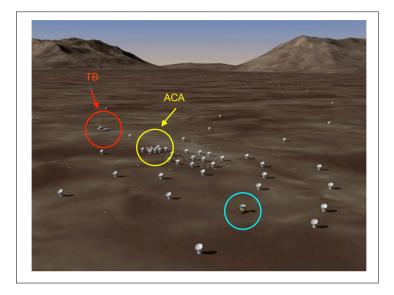


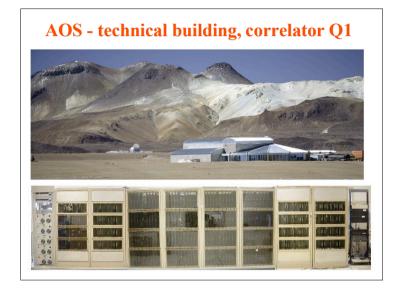


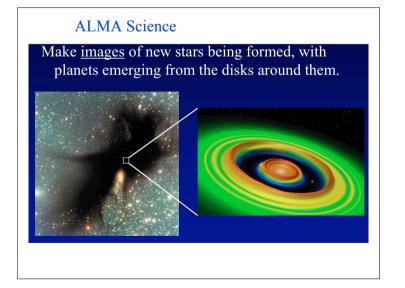

	Prelim	inary results within	Specifications parentheses are referred to the not include noise from optics losses				
		Receiver noise temperature					
ALMA Band	Frequency Range	T _{Rx} over 80% of the RF band	T _{Rx} at any RF frequency	Mixing scheme	Receiver technology	Supplier	
1	31.3 – 45 GHz	17 K	28 K	USB	HEMT	Not assigned ***	
2	67 – 90 GHz	30 K	50 K	LSB	HEMT	Not assigned	
3	84 – 116 GHz	37 K (40K)	62 K (50K)	2SB	SIS	HIA	
4	125 – 169 GHz	51 K (45K)	85 K (~55K)	2SB	SIS	NAOJ	
5	163 - 211 GHz**	65 K	108 K	2SB	SIS	0\$0	
6	211 – 275 GHz	83 K (40K)	138 K (60K)	2SB	SIS	NRAO	
7	275 - 373 GHz*	147 K (75K)	221 K (100K)	2SB	SIS	IRAM	
8	385 - 500 GHz	196 K (160K)	294 K (~270K)	2SB	SIS	NAOJ	
9	602 – 720 GHz	175 K (120K)	263 K (150K)	DSB	SIS	NOVA	
10	787 – 950 GHz	230 K	345 K	DSB	SIS	NAOJ ?	
	n 370 – 373 GHz T _n al, linear polarizati • Increased sensitiv • Measurement of 4	on channels:	• 183 Gł	inder consider Hz water vap	s, funded by the ation by U. Chile bour radiomete pheric path leng	e en:	

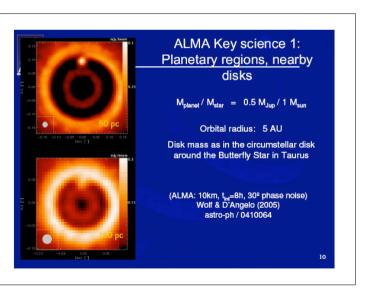
Cartridge Pr	oduction	
Band 3 (HIA, Canada)	3 mm 86-119 GHz	Rand 9
• Band 6 (NRAO, USA)	1.3 mm 211-275 GHz	
- Band 7 (IRAM, France)	0.85 mm 275-370 GHz	
- Band 9 (NOVA, The Net	h erlands)	720 GHz
 Band 4 (NAOJ, Japan) Band 8 (NAOJ, Japan) 	2 mm 125-169 GHz 0.65 mm 385-500 GHz	Available
- Band 10(NAOJ, Japan)	0.35 mm 787-950 GHz	from start

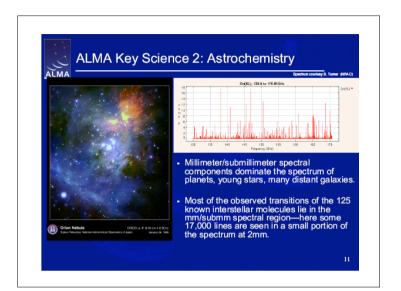


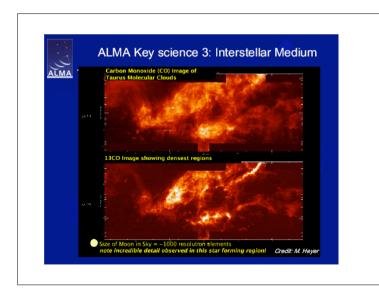


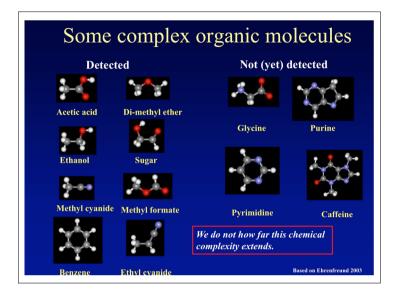


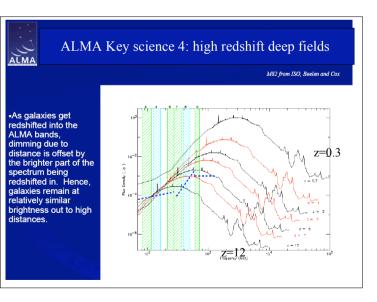


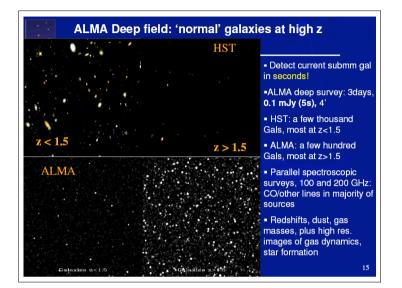


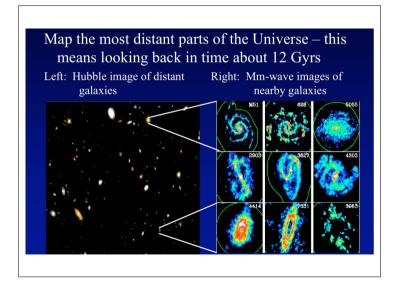


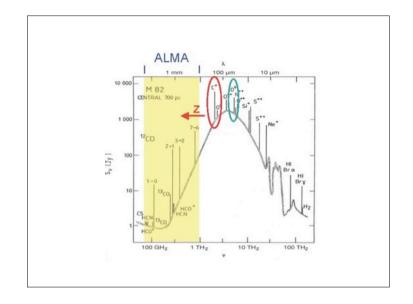


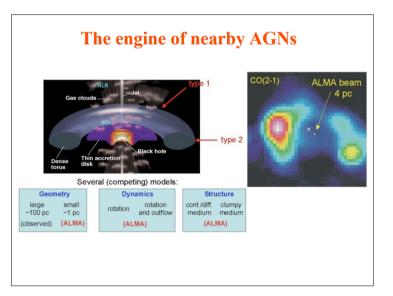


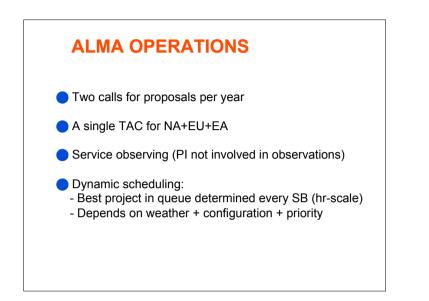


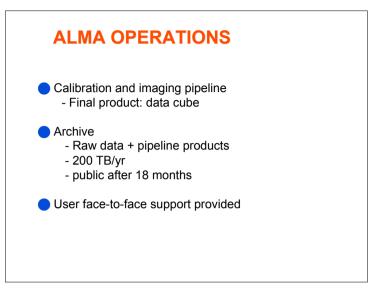


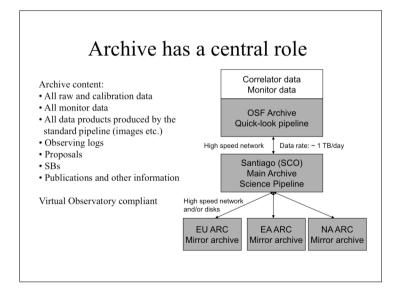


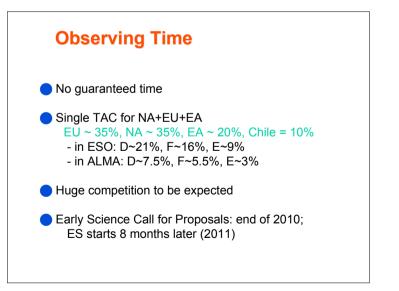


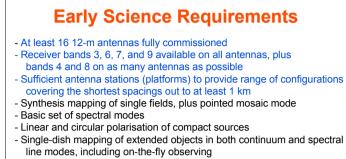








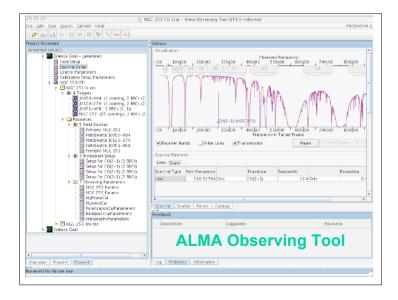


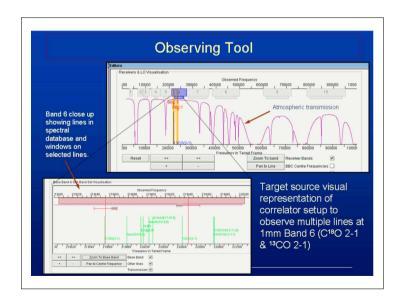


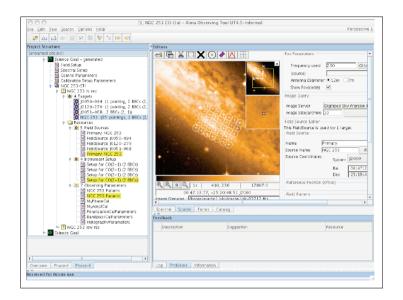
- Calibration of all the above to a level comparable with existing mm-wave arrays requires hot/ambient loads and WVRs
- Software to support users' applications, the preparation and execution of observations and off-line data reduction

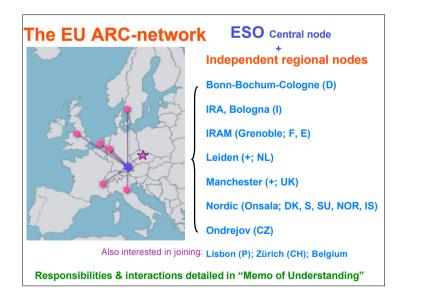
Expected in 2012: observe >75% of time with >40% of antennas; 2013: formal end of construction

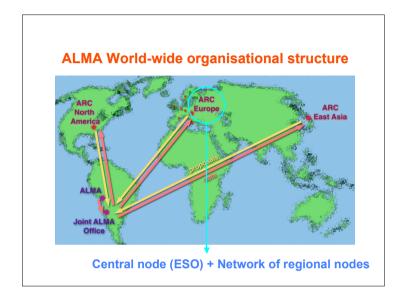
Phase 1 Observing proposal

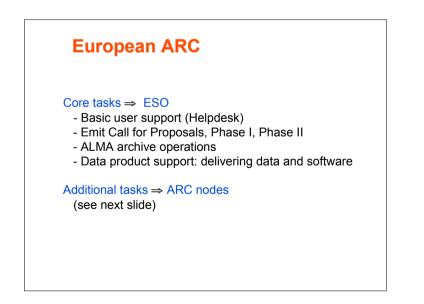

- mostly concentrated on science
- some administrative information
- minimal amount of technical information
- target list

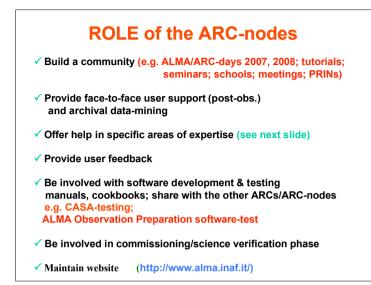

Phase 2 Observing program

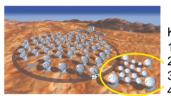

- complete set of technical details
- full specifications of how observations are to be carried out
- consistency with Phase 1


Observing program - AOT


- scheduling blocks (SchedBlocks) [cf. VLT]
 - key executable self-consistent units:
 - targets, correlator set-up, receiver set-up, pointing, phase calibrators, etc.
- Observing Units Sets (ObsUnitSets)
 structure to support recursive hierarchy of SchedBlocks







Areas of expertise in EU ARC-nodes

- 1. Wide-field, high-dynamic range imaging (UK/NL/F)
- 2. Mosaicing (I)
- 3. High-frequency observing (NL)
- 4. Infrastructure for advances data analysis tools (D/NL/Nordic)
- Data handling/GRID-technology (I/P) 5
- Coordinating surveys/key projects (I) 6.
- 7. Polarimetry (I/F/D)
- 8. Astrometry (Nordic/D/UK)
- 9. Pipeline heuristics (D)
- 10. Automatic data calibration (D) 11. Data pipelining (UK)
- 12. Multi-frequency synthesis (Nordic/UK) 13. Array combination imaging (UK)
- 14. Robust self-cal methods and use of WVR data (Nordic)
- 15. Data handling and server (P)
- 16. Instrumental calibration (F)
- 17. Atmospheric phase calibration (F)
- 18. ALMA imaging simulations (F)

ALMA

- Key science 1: Planetary regions, nearby disks
- 2: Astrochemistry
- 3: Interstellar medium
- 4: High-redshift deep fields

 $50 \times 12m + (4 \times 12m + 12 \times 7m)$ 0.3-3mm; resol: 0".015λ(mm)

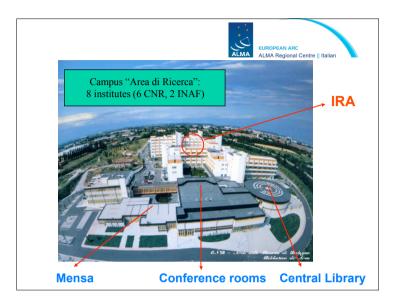
Italv & ALMA

Strong interest in: planetary sciences, star formation, stellar evolution, galaxy formation, high-redshift universe, cosmology

Italian representatives in ALMA:

Testi – European Project Scientist Tofani – ALMA Management Advisory Committee (AMAC) Maiolino – European Science Advisory Committee (ESAC) Andreani - EU ARC Manager Tarenghi - former Director ALMA; now ESO rep. in Chile

Origin of the It. ALMA Regional Centre


In response to ESO-call, national INAF-ALMA Commission * was established in June 2004. This recommended:

IRA to host ALMA Regional Centre

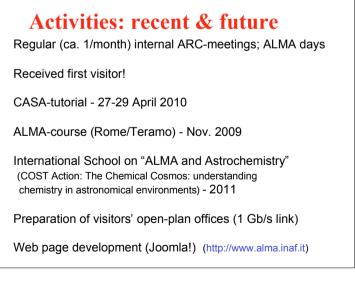
Primarily based on IRA's extensive experience with (radio) interferometrical instruments, observing techniques, software packages and development, and managing large data sets.

Expression of interest from INAF to ESO. Italian ARC: hosted by IRA-Bologna, funded by INAF

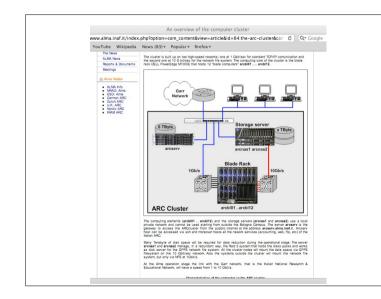
Testi, de Zotti, Mack, Natta, Pucillo

Future situation

Immediate Future:


1 new post-doc to be hired 2010 1 ESO-ALMA COFUND Fellow may arrive 2010 INAF: ARC astronomer (tenure) 2010 INAF: ALMA science (tenure) 2010 (Arcetri or IRA) Hardware acquisition: ≥ 2008 (www.alma.inaf.it)

Long-term: ≥ 2011:


1 FTE provided by (4-6) IRA-staff; 1 system manager; 4 post-doc positions


+ Involve experts from other institutes

JSEFUL WEB PAGES

Latest News: http://www.almaobservatory.org/

General ALMA pages at ESO: http://www.eso.org/sci/facilities/alma/

Possible Science Projects (DRSP): http://www.eso.org/sci/facilities/alma/science/drsp/

ESO-ARC pages: http://www.eso.org/sci/facilities/alma/arc/

Italian ARC-pages: http://www.alma.inaf.it/

Check for job offers.